| Symboler | Exakta trigonometriska värden | Blandade formler | Derivator | Integraler | Gränsvärden | Komplexa tal | Trigonometri | Geometri |

Exakta värden på några vinklars trigonometriska funktioner

Deg Rad Sin cos tan cot
0 0 0 1 0 \pm \infty \hspace{10}^*
15 \frac{\pi}{12} \frac{1}{4}\(\sqrt{6}-\sqrt{2}\) \frac{1}{4}\(\sqrt{6}+\sqrt{2}\) 2-\sqrt{3} 2+\sqrt{3}
30 \frac{\pi}{6} \frac{1}{2} \frac{\sqrt{3}}{2} \frac{1}{\sqrt{3}} \sqrt{3}
45 \frac{\pi}{4} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} 1 1
60 \frac{\pi}{3} \frac{\sqrt{3}}{2} \frac{1}{2} \sqrt{3} \frac{1}{\sqrt{3}}
75 \frac{5\pi}{12} \frac{1}{4}\(\sqrt{6}+\sqrt{2}\) \frac{1}{4}\(\sqrt{6}-\sqrt{2}\) 2+\sqrt{3} 2-\sqrt{3}
90 \frac{\pi}{2} 1 0 \pm \infty \hspace{10}^* 0
105 \frac{7\pi}{12} \frac{1}{4}\(\sqrt{6}+\sqrt{2}\) -\frac{1}{4}\(\sqrt{6}-\sqrt{2}\) -(2+\sqrt{3}) \sqrt{3}-2
120 \frac{2\pi}{3} \frac{\sqrt{3}}{2} -\frac{1}{2} -\sqrt{3} -\frac{1}{\sqrt{3}}
135 \frac{3\pi}{4} \frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}} -1 -1
150 \frac{5\pi}{6} \frac{1}{2} -\frac{\sqrt{3}}{2} -\frac{1}{\sqrt{3}} -\sqrt{3}
180 \pi 0 -1 0 \pm \infty \hspace{10}^*
195 \frac{13\pi}{12} -\frac{1}{4}\(\sqrt{6}-\sqrt{2}\) -\frac{1}{4}\(\sqrt{6}+\sqrt{2}\) 2-\sqrt{3} 2+\sqrt{3}
210 \frac{7\pi}{6} -\frac{1}{2} \frac{-\sqrt{3}}{2} \frac{1}{\sqrt{3}} \sqrt{3}
225 \frac{5\pi}{4} -\frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}} 1 1
240 \frac{4\pi}{3} -\frac{\sqrt{3}}{2} -\frac{1}{2} \sqrt{3} \frac{1}{\sqrt{3}}
270 \frac{3\pi}{2} -1 0 \pm \infty \hspace{10}^* 0
285 \frac{19\pi}{12} -\frac{1}{4}\(\sqrt{6}+\sqrt{2}\) \frac{1}{4}\(\sqrt{6}-\sqrt{2}\) -(2+\sqrt{3}) \sqrt{3}-2
300 \frac{5\pi}{3} -\frac{\sqrt{3}}{2} \frac{1}{2} -\sqrt{3} -\frac{1}{\sqrt{3}}
315 \frac{7\pi}{4} -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} -1 -1
330 \frac{11\pi}{6} -\frac{1}{2} \frac{\sqrt{3}}{2} -\frac{1}{\sqrt{3}} -\sqrt{3}
345 \frac{23\pi}{12} -\frac{1}{4}\(\sqrt{6}-\sqrt{2}\) \frac{1}{4}\(\sqrt{6}+\sqrt{2}\) \sqrt{3}-2 -(2+\sqrt{3})
360 2\pi 0 1 0 \pm \infty \hspace{10}^*

(*) Avser värdet på gränsvärdet till funktionen då vinkeln går mot angivet värde från vänster respektive höger.
För den exakt angivna vinkeln är funktionen odefinierad.

Powered by Mattecentrum
 |  Denna sida använder cookies |  Kontakta oss |  Feedback |