12 svar
42 visningar
solskenet är nöjd med hjälpen!
solskenet 2751
Postad: 16 sep 2020

Absolutbelopp

|x-1| + |x-5| =8 

Jag kommer fram till endast ett rätt x värde men ska vara 2 st korrekt x värden som är svaret. Hur ska jag Gördalen att hitta att det andra x:et? 

Laguna 10752
Postad: 16 sep 2020

Rita, så borde det framgå i vilket fall du har missat något. 

solskenet 2751
Postad: 16 sep 2020

Jag föredrar att inte rita då jag inte vet hur man gör... kan man lösa det istället algebraiskt?

Laguna 10752
Postad: 16 sep 2020

Fall 2 är ju samma som fall 1. Var har du x>5?

Yngve 17853 – Volontär digitala räknestugor
Postad: 16 sep 2020 Redigerad: 16 sep 2020

Du har hittat två brytpunkter: x = 1 och x = 5.

Det borde ge dig följande tre intervall:

A: x<1x<1

B: 11<51\leq1<5 och

C: x5x\geq5

Du har i din lösning beskrivit dem på ett annat sätt.

=======

Och du verkar ha blandat ihop intervallen:

  • Ditt fall 1 och fall 2 är identiska och lika med intervall A.
  • Ditt intervall 3 är lika med intervall B.
  • Du saknar alltså intervall C.
Laguna 10752
Postad: 16 sep 2020

Att rita är ett bra hjälpmedel. En del uppgifter går t o m ut på att rita. 

solskenet 2751
Postad: 16 sep 2020

Kommer fram till att x=-1 och x=7

Bra, nu ser dina beräkningar snyggare ut och de är lättare att följa

Har du kontrollerat ditt resultat?

solskenet 2751
Postad: 16 sep 2020

Ja, med hjälp av tallinjen. 

I fall 1 ser man att x< 1 . -1 är mindre än 1. Därav stämmer svaret att x=-1. 

I fall 2 ser man  x> 5 . 7 är större än 5. Därav stämmer svaret.

 

I fall 3 gick det inte att lösa ekvationen då den saknar lösning. Därav är fall 3 bortstruken 

Nja, bara för att -1<1 så betyder det inte att -1 är en lösning till ekvationen. Samma sak gäller den andra lösningen.

Som alltid när det gäller ekvationer så kan du kontrollera dina lösningar genom att sätta in dem i ekvationen en i taget och se om ekvationen då går jämnt ut eller inte.

Gör det och berätta vad du kommer fram till.

solskenet 2751
Postad: 16 sep 2020

Okej.

| -1-1| = |-2|= 2 

|-1-5|=-6 = 6

6+2=8 . (Detta stämmer) 

——-

|7-1|+ |5-7 |= 6+2=8 

båda fallen stämmer

Bra!

Tag som vana att alltid kontrollera dina resultat om det går. Då kommer du snabbt att kunna upptäcka om något inte stämmer.

Om om resultatet verkar stämma så slipper du den gnagande osäkerheten kring om du gjort rätt eller inte.

solskenet skrev:

Jag föredrar att inte rita då jag inte vet hur man gör... kan man lösa det istället algebraiskt?

Desto större anledning att lära sig rita!

Vi har tre intervall: x<1, 1<x<5 och 5<x.

Om x<1 så är |x-1|=1-x och| x-5|=5-x. Det betyder att |x-1|+|x-5|=1-x+5-x=6-2x. Rita in linjen y=-2x+6 svagt och fyll i linjen där x<1.

Om x<1 så är |x-1|=x-1och| x-5|=5-x. Det betyder att |x-1|+|x-5|=x-1+5-x=4. Rita in linjen y=4 svagt och fyll i linjen där 1< x<5.

Om 1<x<5 så är |x-1|=x-1 och| x-5|=x-5. Det betyder att |x-1|+|x-5|=x-1+x-5=2x-6. Rita in linjen y=2x-6 svagt och fyll i linjen där 5<x.

Rita också in linjen y=8 och undersök var de båda funktionerna skär varandra.

Svara Avbryt
Close