8 svar
50 visningar
Mackangolf är nöjd med hjälpen!
Mackangolf 5
Postad: 8 okt 2019

deriverings fråga

b och c fattar jag hur man löser. C är noll eftersom den går genom origo. För b derivera jag uttrycket till f'(x)=2ax+b. Sedan förstod jag med hjälp av första tangenten att om y=x=0 (origo) att b måste vara 1 för att tangenten ska ha lutningen 1 som y=x har.  

 

Men hur löser man a??

 

(facit säger att det ska vara 1/12, men det hjälper mig inte mycket)

PATENTERAMERA 453
Postad: 8 okt 2019 Redigerad: 8 okt 2019

Den räta linjen har lutningen 2. Var har andragradskurvan lutningen 2?

Mackangolf 5
Postad: 8 okt 2019 Redigerad: 8 okt 2019

hur ska jag kunna lösa det när det är två variabler? (a och x)

PATENTERAMERA 453
Postad: 8 okt 2019
Mackangolf skrev:

hur ska jag kunna lösa det när det är två variabler? (a och x)

Lös ut x som funktion av a. Och tänk på att den räta linjen och andragradskurvan skall tangera varandra för detta värde på x. Vad krävs ytterligare för att så skall vara fallet?

Mackangolf 5
Postad: 8 okt 2019

jag vet inte :(

PATENTERAMERA 453
Postad: 8 okt 2019
Mackangolf skrev:

jag vet inte :(

De två kurvorna måste ha samma y-värde för det x-värde som du fått fram. De kan bara tangera varandra om de går genom samma punkt, eller hur?

PATENTERAMERA 453
Postad: 9 okt 2019
PATENTERAMERA skrev:
Mackangolf skrev:

jag vet inte :(

De två kurvorna måste ha samma y-värde för det x-värde som du fått fram. De kan bara tangera varandra om de går genom samma punkt, eller hur?

Vi har fått fram c = 0 och b = 1, således blir andragradskurvan

y = ax2 + x.

Denna kurva skall tangera y = 2x - 3, som har lutningen 2.

Vi vill således hitta ett x för viket derivatan till andragradsfunktionen är 2, dvs

2ax + 1 = 2, vilket ger

x = 1/(2a).

Kurvan y = ax2 + x och linjen y = 2x - 3 måste ha samma y-värde då x = 1/(2a) (de måste ju gå genom samma punkt för att kunna tangera), vilket ger följande ekvation

a(1/(2a))2 +1/(2a) = 2/(2a) - 3.

Om vi löser denna ekvation får vi a = 1/12.

Har du ritat upp de båda linjerna och det du vet om parabeln?

Mackangolf 5
Postad: 9 okt 2019

Tack!

Svara Avbryt
Close