7 svar
123 visningar
goljadkin 203
Postad: 16 jul 2017

Divergent

Hej

kan någon förklara hur man ska veta när en integral är divergent, jag ser på svaret att 12dxx2-1 är divergent men jag vet inte hur man ska se det.

Lirim.K 482
Postad: 17 jul 2017 Redigerad: 17 jul 2017

Hur ser funktionen f(x)=1/(x2-1) ut? Har den någon asymptot? Vart börjar den gå mot oändligheten?

Primitiven till funktionen är

     F(x)=ln1-x-ln1+x2+C.

Vad händer om du sätter in gränserna och beräknar F(2)-F(1)?

goljadkin 203
Postad: 17 jul 2017 Redigerad: 17 jul 2017

Då jag sätter in F(2) får jag -ln32 och med F(1) -ln så F(2)-F(1) skulle bli -ln32-ln=-ln2

Sedan ser vi väl att kurvan kommer aldrig att skära x-axeln då den når sin högsta punkt i y-1

Ture 576
Postad: 17 jul 2017 Redigerad: 17 jul 2017
goljadkin skrev :

Då jag sätter in F(2) får jag -ln32 och med F(1) -ln så F(2)-F(1) skulle bli -ln32-ln=-ln2

Sedan ser vi väl att kurvan kommer aldrig att skära x-axeln då den når sin högsta punkt i y-1

Nej, det är fel.

F(2) = (ln(1-2)-ln(1+2))/2 = (ln(-1)-ln(3))/2  = ln(-1/3)/2.

Hur är det med ln av negativa tal?

Stokastisk 1329
Postad: 17 jul 2017

Den primitiva funktion som är relevant här är följden

F(x)=ln(x - 1) - ln(x + 1)2

Tänk på att 1/x har de primitiva funktionerna ln(|x|) + C. Nu har man att

121x2-1dx=F(2) - limx1F(x)

Vad går gränsvärdet mot?

goljadkin 203
Postad: 17 jul 2017
Ture skrev :
goljadkin skrev :

Då jag sätter in F(2) får jag -ln32 och med F(1) -ln så F(2)-F(1) skulle bli -ln32-ln=-ln2

Sedan ser vi väl att kurvan kommer aldrig att skära x-axeln då den når sin högsta punkt i y-1

Nej, det är fel.

F(2) = (ln(1-2)-ln(1+2))/2 = (ln(-1)-ln(3))/2  = ln(-1/3)/2.

Hur är det med ln av negativa tal?

blir det inte -ln3/2?

goljadkin 203
Postad: 17 jul 2017
Stokastisk skrev :

Den primitiva funktion som är relevant här är följden

F(x)=ln(x - 1) - ln(x + 1)2

Tänk på att 1/x har de primitiva funktionerna ln(|x|) + C. Nu har man att

121x2-1dx=F(2) - limx1F(x)

Vad går gränsvärdet mot?

sätter vi in gränserna borde vi väl få 13-33=-23

Stokastisk 1329
Postad: 17 jul 2017 Redigerad: 17 jul 2017
goljadkin skrev :
Stokastisk skrev :

Den primitiva funktion som är relevant här är följden

F(x)=ln(x - 1) - ln(x + 1)2

Tänk på att 1/x har de primitiva funktionerna ln(|x|) + C. Nu har man att

121x2-1dx=F(2) - limx1F(x)

Vad går gränsvärdet mot?

sätter vi in gränserna borde vi väl få 13-33=-23

Jag förstår inte alls var du får de där talen ifrån? Du har att

limx1+F(x)=limx1+ln(x - 1) - ln(x + 1)2

Så man ser att ln(x - 1) går mot -oändligheten och ln(x + 1) går mot ln(2), så därför är gränsvärdet -oändligheten. Detta innebär att integralen divergerar.

Svara Avbryt
Close