4 svar
46 visningar
Sykey Online 277
Postad: Idag 15:05

Dubbelintegral och Fubinis sats

Två frågor:

1. Hur kan de bara ändra övre och undre gräns så där? Både när man byter ut delta med den kartesiska produkten och när man gör variabelbyte.

2. Hur kan de se om funktionen är symmetrisk eller inte? Samma gäller om den är udda? Även om jag vet att det är symmetrisk eller udda hur ska man dra slutsatsen att integranden blir 0?

Laguna Online 31995
Postad: Idag 15:37

Delta går från x = -2 till x = 2 och från y = 1 till y = 2. Vad är det som ändras?

Om g(-x) = g(x) så är funktionen udda. Ser du att den är det?

Då tas varje bidrag till integralen ut av ett lika stort bidrag på andra sidan origo men med omvänt tecken.

Sykey Online 277
Postad: Idag 15:42

Fattar fortfarande inte hur vi fick 2+x^2 och 5+x^2 

Laguna Online 31995
Postad: Idag 17:09

När y = 1 så är u = 2+x2. Motsvarande för y = 2.

Sykey Online 277
Postad: Idag 19:28

Ahh, det var ju sant. Men det med bidragen om var sida om origo. Båda är ju fortfarande ovanför x-axeln så då borde de väl adderas och därmed bli dubbel så stor... idk.

Svara
Close