8 svar
378 visningar
EulerWannabe behöver inte mer hjälp
EulerWannabe 185
Postad: 2 sep 2020 15:14

En ränna med lodräta sidor

"Av fyra lika brädor vill man göra en ränna med lodräta sidor. Vilken vinkel skall bottenbrädorna bilda med varandra för att rännan skall rymma så mycket som möjligt?"

Jag sätter längden på brädorna till 1 för enkelhetens skull.

Sedan skriver jag ett uttryck för arean.

När jag sedan deriverar arean, vilket jag gör i Wolfram Alpha för att jag är lat, och sedan säger att derivatan skall vara 0, då blir det inte rätt svar. Så jag tror jag gör nåt fel. Men vore tacksam om någon kan titta ifall jag har gjort nåt fel redan här.

Affe Jkpg 6630
Postad: 2 sep 2020 16:00 Redigerad: 2 sep 2020 16:29

Edit: Ser rätt ut :-)

Laguna Online 29854
Postad: 2 sep 2020 16:02

Vad kommer Wolfram Alpha fram till?

Niro 215 – Fd. Medlem
Postad: 2 sep 2020 22:22

180 grader.

Mega7853 211
Postad: 3 sep 2020 08:14

Jag får inte Wolfram att svara 180 grader hur jag än gör. Det känns lite komplicerat att uttrycka "höjden" som sqrt(1-(sin(a/2)^2)). Om du istället använder cos(a/2) så blir det lättare att derivera på egen hand.

Laguna Online 29854
Postad: 3 sep 2020 09:03

Kanske nåt parentesfel. Kan du ta en bild av hur det ser ut i Wolfram Alpha när du får 180 grader?

EulerWannabe 185
Postad: 3 sep 2020 15:45

Jag kör på tipset från Mega7853 och skriver höjden som cos(a/2) istället.

A = sin(a/2) * (cos(a/2) + 2)

A' = 1/2 (cos(a/2) (cos(a/2) + 2) - sin^2(a/2))

1/2 (cos(a/2) (cos(a/2) + 2) - sin^2(a/2)) = 0

((cos(a/2))^2 + 2cos(a/2))/2 = (sin(a/2))^2

Är det bara att börja använda några slags trigonometriska formler för att lösa detta nu?

Mega7853 211
Postad: 3 sep 2020 16:02 Redigerad: 3 sep 2020 16:08

Ja, om man först använder några trigonometriska likheter så kan man sedan få det till en andragradsekvation efter en substitution. Man löser andragradsekvationen, väljer den lämpliga av lösningarna och löser ut vinkeln ur substitutionen. Klart!

EulerWannabe 185
Postad: 3 sep 2020 17:48

Trigonometriska ettan blev bra. Tusen tack!

Svara
Close