4 svar
43 visningar
PhilipL är nöjd med hjälpen!
PhilipL 107
Postad: 31 jul 2020 Redigerad: 31 jul 2020

Flervar. Linje-/kurvintegral

Tjena, jag försöker mig på att förstå beräkning av linjeintegraler men får inte ihop det varken tankemässigt eller beräkningsmässigt.

Fråga: Beräkna den givna linjeintegralen över den specificerade kurvan ζ.

ζ(x+y) ds, r=at*i+bt*j+ct*k, 0tm

Beräkning: 

Jag har inte lyckats förstå metoden så det är mitt fokus här.

Jag tolkar det som att f(x,y)=x+y, samt att parametriseringen av kurvan ζ, har givit  r=at*i+bt*j+ct*k.

Utifrån detta kan jag se att: x=at, y=bt, z=ct

Jag vill tolka det som att jag ska derivera r m.a.p. t: drdt=a*i+b*j+c*k

Problem: Jag vet inte hur jag ska fortsätta här..

Lösningsförslaget säger att värdet av drdt=a2+b2+c2

Jag förstår inte hur de kommer fram till värdet av dr/dt..

Tack på förhand.

Skaft 1111 – F.d. Moderator
Postad: 31 jul 2020 Redigerad: 31 jul 2020

När du deriverar får du en ny vektor: drdt=aı^+bȷ^+ck^\frac{dr}{dt} = a\hat{\imath} + b\hat{\jmath}+c\hat{k}

Beloppet (längden) av den vektorn är |drdt|=a2+b2+c2|\frac{dr}{dt}| = \sqrt{a^2+b^2+c^2} (detta är 3D-motsvarigheten till Pythagoras sats avståndsformeln: längden av rymddiagonalen)

Jroth 1073
Postad: 31 jul 2020 Redigerad: 31 jul 2020

Är du med på att parameterframställningen kan skrivas som en vektorvärd funktion i en variabel (parametern tt) så här:

r(t)=(at,bt,ct)\mathbf{r}(t)=(at,bt,ct)

Nu deriverar vi vektorn med avseende på t.

drdt=(a,b,c)\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}=(a,b,c)

Hur lång är vektorn (a,b,c)(a,b,c)? Längden ges av normen (längden av vektorn).

|r˙|=a2+b2+c2|\dot{\mathbf{r}}|=\sqrt{a^2+b^2+c^2}

Integralen ges slutligen av

γf(r(t))|drdt|dt\displaystyle \int_\gamma f(\mathbf{r}(t))|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}|dt

PhilipL 107
Postad: 31 jul 2020

Just det, längden av vektorn!
Här tar vi då längden av vektorn från origo antar jag!

Tack så länge, jag uppdaterar nog strax med ytterligare en fråga eller två!

PhilipL 107
Postad: 31 jul 2020

Inga mer frågor på denna iaf!

Tack så mycket, sån enkelt egentligen, jag hade bara tolkat uttrycket drdt fel!

Svara Avbryt
Close