14 svar
91 visningar
Malle 45
Postad: 12 okt 2017

Kraft och Rörelse

Uppgift -> https://puu.sh/xWbzK/09a98c9685.png 

Jag tänkte att jag räknar ut accelerationen genom att först räkna ut tiden;

t= s/v = 3/3.2 = 0,937s

a = v/t = 3.2/0,937 = 3,41m/s^2

Och sen räkna ut kraften F= mxa = 1,5 x 3,41 = 5,11 N

Sen tänkte jag att jag ritar ut mg's kraftkomposanter för kraftkomposanten i x led ska väl vara lika med friktionskraften?

Så då blir det Sin(17) = F2/5,11 -> Sin(17) x 5,11 = 1,49 N

Men det känns som jag har gjort fel, är jag helt ute o cyklar eller har jag slarvat någonstans?

HT-Borås 1421
Postad: 12 okt 2017

 Du får börja med att rita ut de krafter som verkar på vagnen. Då ser du att i rörelseriktningen har du en komposant av mg framåt och en friktionskraft bakåt. Summan (dvs. skillnaden i detta fall) av dessa ger massa * acceleration.

Malle 45
Postad: 12 okt 2017

Så du menar att jag ska ta Kraftkomposanty-Kraftkomposantx = mxa? För kraftkomposant x är ju friktionskraften men kraftkomposant y är väl tyngdkraften?

Malle 45
Postad: 12 okt 2017

Nvm, jag tror jag fattar! så det blir att räkna ut mg och sen använda trigonometri för att få fram resterande krafter?

HT-Borås 1421
Postad: 12 okt 2017 Redigerad: 12 okt 2017

Det sistnämnda är riktigt. Du ska alltså använda komposanten mg sin α, tillsammans med hela friktionskraften F.

Malle 45
Postad: 12 okt 2017

Så svaret blir alltså sin(17)xmg = 4,3N ? För xkomposanten är ju friktionskraften och det är ju det som dom frågar efter?

HT-Borås 1421
Postad: 12 okt 2017

Friktionskraften är inte samma som x-komposanten av mg. Du får ställa upp ekvationen enligt accelerationslagen, integrera två gånger för att få sträckan som funktion av tiden, sätta in de givna siffrorna och på så sätt få fram F.

HT-Borås 1421
Postad: 12 okt 2017

Accelerationslagen i riktning neråt längs planet (som du har angett som x-riktning): mg sin α - F = ma,

Vinkelrätt mot planet: N - mg cos α = 0 (det finns ingen acceleration i den riktningen). Du behöver inte denna ekvation i uppgiften.

Från den första ekvationen kan du bestämma accelerationen a, som: a = g sin α - F/m,

Integrera det en gång för att få hastigheten - här är accelerationen konstant så du kan använda v = at + v0. Eftersom starten sker från vila är v0 = 0.

Integrera en gång till så du får sträckan s = at22s0. Du mäter sträckan från startläget, så s0 = 0.

Sätter du nu in alla givna siffror får du fram F.

Malle 45
Postad: 13 okt 2017

Okej tack!

Malle 45
Postad: 13 okt 2017 Redigerad: 13 okt 2017

Dock så har jag ju varken a eller F i början. Och via ekvationen du skrev "a = g sin α - F/m "så behöver jag ju ha F? eller menar du att F är mg?

HT-Borås 1421
Postad: 13 okt 2017

F är inte mg. Du får accelerationen a genom villkoret på sträcka och tid. Har du a får du F ur det första sambandet.

Malle 45
Postad: 13 okt 2017

Så alltså; ekvationen är F-mg sin(17) = mxa 

v=s/t -> t=s/v = 0,94s 

v=v0 + at -> a= (v-v0)/t -> 3,4m/s^2 

 

F= mxa + mg sin(17)  = 1,5 x 3,4 + (1.5 x 9,82 x sin(17)) = 9,2 N ?

HT-Borås 1421
Postad: 13 okt 2017

Hastigheten är inte konstant, så du kan inte använda formeln v = s/t. Utgå från att accelerationen är konstant (eftersom alla krafter är konstanta). 

Malle 45
Postad: 13 okt 2017

Men går det inte om jag räknar ut medelhastigheten först? så (v0+v1)/2  = 1.6m/s och sen tiden via t=s/v = 3/1.6 = 1.875s 

Och sen (v1-v0)/t =  a= 1.7m/s^2 

Ffr - F =mxa -> F= Ffr- mxa =  ( mgsin(17)) - 1.7x1.5 = 1.7N

HT-Borås 1421
Postad: 13 okt 2017

Jo, med medelhastigheten blir det riktigt. Sträckan = medelhastigheten * tiden. Men du måste vara klar över förutsättningarna, att medelhastigheten kan beräknas som (v0+v1)/2 bara om hastigheten ändras linjärt (som a*t).

Svara Avbryt
Close