9 svar
76 visningar
moonlighttt är nöjd med hjälpen
moonlighttt 177
Postad: 23 jan 2020 15:18 Redigerad: 23 jan 2020 15:22

Numeriskderivering , varför ska man ta bort 2:an i nämnaren?

Yngve 22347 – Live-hjälpare
Postad: 23 jan 2020 15:23 Redigerad: 23 jan 2020 15:43

Täljaren har två termer som båda innehåller en faktor 2.

De har brutit ut den faktorn för att sedan förkorta bort den, men de visade inte det räknesteget.

moonlighttt 177
Postad: 23 jan 2020 15:31

Hur skulle det se ut om man gjorde det steget, förstår inte riktigt hur man kan bryta ut 2:orna i täljaren för att få bort 2 i nämnaren?

Tegelhus 202
Postad: 23 jan 2020 15:41
moonlighttt skrev:

Hur skulle det se ut om man gjorde det steget, förstår inte riktigt hur man kan bryta ut 2:orna i täljaren för att få bort 2 i nämnaren?

Det gäller att

2a-2b=2×(a-b)

på samma sätt kan man bryta ut i ditt uttryck:

2ln(2a+2h+1)-2ln(2a-2h+1)=2×(ln(2a+2h+1)-ln(2a-2h+1))

Därefter har du faktorn 2 i både täljare och nämnare, då är det enkelt att förkorta

moonlighttt 177
Postad: 23 jan 2020 15:47

Så det blir så här, problemet är att jag inte får ut 4 nu som är svaret, eller är det att jag gjort fel i uttrycket ln(2a-2h+1)?

moonlighttt 177
Postad: 23 jan 2020 16:03 Redigerad: 23 jan 2020 16:14

Fick ut att svaret blir 3, om jag skriver in ln(0,9999) inte förkorta det till 0,99, så får ändå ut fel svar

Yngve 22347 – Live-hjälpare
Postad: 23 jan 2020 16:38 Redigerad: 23 jan 2020 16:41

I täljarens andra term ska det vara -2h + 1 = -2*0,0001 + 1 = -0,0002 + 1 = 0,9998.

Avrunda inte.

---------

Sen ska det vara lim h -> 0, inte lim a -> 0.

Plus en del andra skrivfel, som vi inte behöver fördjupa oss i nu.

moonlighttt 177
Postad: 23 jan 2020 17:07 Redigerad: 23 jan 2020 17:09

Jaha okej för vår lärare skrev att h—> kunde ersättas med a—> här för att a=o. Så här skrev han på tavlan, men förstod inte riktigt allt han menade för han skrev båda två under lim  Men det är rätt som jag skrivit när jag bröt ut en 2:a för blev osäker nu för då ska jag väll ta bort de andra 2:orna i parantesen?

Yngve 22347 – Live-hjälpare
Postad: 23 jan 2020 17:24 Redigerad: 23 jan 2020 17:29

Jag ser ingen anledning att skriva till a -> 0 i uträkningarna. Det går lika bra att helt enkelt ersätta a med 0 i uträkningarna efter att du har ställt upp differenskvoten.

----------

Jag vet inte hur din lärare förklarade det hela, men det är viktigt att skilja på numerisk derivering och äkta derivering.

Numerisk derivering, observera tecknet "ungefär lika med":

f'(a)f(a+h)-f(a-h)2hf'(a)\approx\frac{f(a+h)-f(a-h)}{2h}

Äkta derivering:

f'(a)=limh0f(a+h)-f(a-h)2hf'(a)=\lim_{h\rightarrow0}\frac{f(a+h)-f(a-h)}{2h}

moonlighttt 177
Postad: 23 jan 2020 17:33

Aa okej, då förstår jag tack

Svara Avbryt
Close