2 svar
153 visningar
Hjalpmaj behöver inte mer hjälp
Hjalpmaj 10 – Fd. Medlem
Postad: 24 mar 2021 13:06 Redigerad: 24 mar 2021 13:31

Prisförändring - förändringsfaktor vs procenträkning med ekvationer

Hej!

Jag känner mig lite förvirrad angående orsaken till att man använder sig av två olika räknesätt för att räkna ut förändringen i priset. Jag kan förklara med hjälp av följande fyra uppgifter:

 

1. Vid en realisation sänker man priset på alla skor med 30%. Bestäm reapriset för skor som tidigare har kostat 480 kr.

2. Eriks lön ska öka med 2%. Bestäm den nya lönen om den ursprungliga lönen är 20 000 kr.

—————— 

3.  Priset på ett par skor sänktes med 16%. Det nya priset blev då 420 kr. Hur stor var prissänkningen i kronor?

4. I en affär höjde man priset på alla varor med 15%. Priset på en bok höjdes då med 18 kr. Vad kostade boken efter prishöjningen?

Varför räknas de första två uppgifterna med hjälp av en förändringsfaktor, dvs:

1.) 480 x 0,7

2) 1.02 x 20 000

 

Och uppgift 3 & 4 med hjälp av en ekvation där man dividerar 420 respektive 18 med procenten omskriven till decimaltal, dvs:

3) 420/0.84

4) 18/0.15


Jag både förstår och blir förvirrad av detta. Jag förstår varför jag dividerar 18/0.15 då jag ska skriva upp problemet som en ekvation:

x * 0.15 = 18

x = 18/0.15

x = 120


Men vad är det som skiljer åt de två olika problemen? Vad är det jag räknar ut som är annorlunda? Och betydde inte 0.15 en minskning på 85 %? Så varför skriver jag inte en ökning på 15% som 1.15, alltså: x = 18/1.15, utan skriver om 15% till decimalform, när jag skriver om en minskning på 16% till 0,84?

Kan jag skriva om de första två uppgifterna också som ekvationer för att det ska bli tydligare vad skillnaden är? 

 

All hjälp uppskattas!

Smaragdalena 80504 – Avstängd
Postad: 24 mar 2021 13:47

Uppgift 3 beräknas också med förändringsfaktorn, men eftersom det i det här fallet det NYA priset, man vit, inte det gamla som i uppgift 1, så blir beräkningarna lite olika. I båda fallen vet man att nya priset = gamla priset gånger förändringsfaktorn. I uppgift 3 behöver man dessutom göra ytterligare ett steg, eftersom man frågar om prissänkningen, inte ursprungspriset.

4. Du vet att prisökningen är 18 kr och att den är + 15 %. Då skulle du kunna räkna ut att 1 % är 18/15 kr och sedan multiplicera med 100. Här har man gjort båda delarna i samma steg.

Om man vill räkna allihop som ekvationer skulle man kunna göra så här:

1. x = (1-0,3).480 där x är det nya priset

2. y = (1+0,02).20 000 där y är den nya lönen

3. den blir jättekrånglig om man vill sätta x = prissänkningen i kr. Sätt istället gamla priset = x. Då får du x(1-0,16) = 420 och får räkna ut prissänkningen i ett separat steg

4. Här är det också enklast att arbeta i två steg. 0,15x = 18 där x är ursprungspriset. Nya priset är x+18 kr eller 1,15x kr. Så om du vill kan du lösa ekvationen x+18 = 1,15x istället.

Så uppgift 1 och 2 blir en "nästan färdiglöst ekvation" redan när man ställer upp det - då känns det onödigt att tänka på det som en ekvation (tycker jag åtminstone). 

Hjalpmaj 10 – Fd. Medlem
Postad: 31 mar 2021 21:35

Tusen tack för hjälpen! Jättesnällt!

Svara
Close