Regler för ett tal och faktorer
Hej.
jag hörde att det finns knep för att faktorisera ett tal.
Vilka regler är detta? Ett exempel är väl om det slutar på ett jämnt tal så det delbart med två. Sen fanns om det slutat på fem så är det delbart med fem. Och om det är udda är det delbart med tre? Sen var det att om man adderar talen och det blir något så betydde det också något. Skulle gärna behöva alla dessa regler så jag kan memorera dem.
mvh
Det finns många, men de som brukar nämnas är:
- Jämt tal => delbart med 2
- Tal som slutar på 0 eller 5 => delbart med 5
- Tal vars siffersumma (siffersumman av 673 är ) är delbar med tre => talet är delbart med 3
Det finns även delbarhetsregler för 7, 11, och större tal, men de behöver man sällan lära sig. Detta eftersom att det i regel går fortare att prova att dividera med dem och se om man får ett heltal som kvot. :)
Två tillägg om delbarhet med 3:
Man kan alltid fortsätta att addera siffersumman om man får ett stort tal när man adderar första gången:
1. Om vi använder 673 så får vi 6 + 7 + 3 = 16 och 1 + 6 = 7, som inte är delbart med 3, men för 672 får vi 6 + 7+ 2 = 15 och 1 + 5 = 6 som är delbart med 3. Alltså är 673 inte delbart med 3 men 672 är delbart.
2. Samma regel funkar även för 9: 675 ger 6 + 7 + 5 = 18 (och om man vill 1+8=9), så 675 är delbart med 9.
Och om du vill ha reglerna för 7 och 11 (som är lite krångligare) hittar du dem här: