6 svar
104 visningar
K.Ivanovitj 168
Postad: 16 jul 2017

Riemannsumma

Hej

jag skulle behöva lite hjälp med att lösa följande uppgift:

 

Sätt f(x)=xln(1+x). Ange den Riemannsumma Rn till 01f(x)dx man får om man delar in integrationsintervallet i delintervall av längd 1/n och som ξk väljer den högra intervallgränsen i respektive delintervall.

Beräkna även limnRn

 

Ska vi alltså börja med att sätta 01xlnx(1+x)dx och sedan ta fram primitiven till xlnx(1+x) ?

Nej, du skall räkna ut en Riemannsumma, d v s summan av n stycken rektanglar vars area du räknar ut genom att multiplicera bredden Δx=1/n \Delta x = 1/n med y-värdet i högerkanten av vardera rektangeln.

Albiki 1032
Postad: 16 jul 2017

Hej!

En Riemannsumma som approximerar integralen är som följer.

    01f(x)dx1nk=1nf(ξk) , \displaystyle \int_{0}^{1} f(x)\,\text{d}x \approx \frac{1}{n}\sum_{k=1}^{n}f(\xi_{k})\ ,

där ξk \xi_k är den högra ändpunkten i delintervallet [tk-1,tk] . [t_{k-1},t_{k}]\ . Här är

    0=t0<t1<<tn=1 \displaystyle 0 = t_{0} < t_{1} < \cdots < t_{n} = 1

en indelning av intervallet [0,1] [0,1] i lika långa delintervall, vilket ger att

    ξk=kn \xi_{k} = \frac{k}{n}

och Riemannsumman blir

    Rn=1nk=1nf(kn) . \displaystyle R_{n} = \frac{1}{n}\sum_{k=1}^{n}f(\frac{k}{n})\ .

Albiki

K.Ivanovitj 168
Postad: 16 jul 2017

okej, svaret ska tydligen bli Rn=k=1nknln1+kn×1n och gränsvärdet blir 1/4

Stokastisk 1329
Postad: 16 jul 2017 Redigerad: 16 jul 2017

Vilket du får om du sätter in att f(x) = xln(1 + x) i uttrycket Albiki skrev för R_n.

Sedan får du var uttrycket konvergerar mot genom att beräkna integralen.

Stokastisk skrev :

Vilket du får om du sätter in att f(x) = xln(1 + x) i uttrycket Albiki skrev för R_n.

Sedan får du var uttrycket konvergerar mot genom att beräkna integralen.

Nej, det står inte i uppgiften att man skall beräkna integralen (genom att integrera, alltså) - det stå ratt man skall beräkna gränsvärdet för Riemannsumman när n går mot oändligheten.

Stokastisk 1329
Postad: 16 jul 2017
smaragdalena skrev :
Stokastisk skrev :

Vilket du får om du sätter in att f(x) = xln(1 + x) i uttrycket Albiki skrev för R_n.

Sedan får du var uttrycket konvergerar mot genom att beräkna integralen.

Nej, det står inte i uppgiften att man skall beräkna integralen (genom att integrera, alltså) - det stå ratt man skall beräkna gränsvärdet för Riemannsumman när n går mot oändligheten.

Det är jag fullt medveten om men eftersom

limnRn=01xln(1 + x)dx

så är att beräkna integralen det lättaste sättet att beräkna gränsvärdet på.

Svara Avbryt
Close