6 svar
51 visningar
dajamanté är nöjd med hjälpen!
dajamanté 2476
Postad: 12 sep 2017 Redigerad: 14 sep 2017

Saker som roterar

Jag vet, vi har precis gjort nåt liknande igår men det verkar att allt är inte på plats på min sida.

Min halfassed men ärligt försök:

z3=-i z3=(-i)3z3=(-i)2*-i=-1*-i=i. Jag har applicerat Albikis skrivning men jag förstår fortfarande inte hur saker roterar.

b).... Absolut belopp måste vara 1... vinkel π2?

Yngve 4734 – Mattecentrum-volontär
Postad: 12 sep 2017 Redigerad: 12 sep 2017

Du söker alla z sådana att

Abs(z^3) = 1

Arg(z^3) = 3pi/2

Beloppet av z ska vara 1 och argumentet v ska vara sådant att 3v = 3pi/2 + n*2pi.

Välj de n som gör att 0 <= v < 2pi.

Lirim.K 488
Postad: 12 sep 2017

Du kan t.ex. skriva att z3=i=a+bi, där a=0 och b=-1. Detta ger då att

     |z3|=02+(-1)2=1=1arg(z3)=3π2

Argumentet är enkelt att se eftersom realdelen är 0 och imaginärdelen är -1 så gäller det att rotationen moturs från positiva x-axeln är 3-kvart. I polär form så vet du att följande gäller:

     r·ei·v=|z3|·ei·arg(z3).

Glöm inte periodiciteten.

dajamanté 2476
Postad: 12 sep 2017
Yngve skrev :

Du söker alla z sådana att

Abs(z^3) = 1

Arg(z^3) = 3pi/2

Beloppet av z ska vara 1 och argumentet v ska vara sådant att 3v = 3pi/2 + n*2pi.

Välj de n som gör att 0 <= v < 2pi.

Så argument blir pi/2 och upprepas varje 120grader...

dajamanté 2476
Postad: 12 sep 2017
Lirim.K skrev :

Du kan t.ex. skriva att z3=i=a+bi, där a=0 och b=-1. Detta ger då att

     |z3|=02+(-1)2=1=1arg(z3)=3π2

Argumentet är enkelt att se eftersom realdelen är 0 och imaginärdelen är -1 så gäller det att rotationen moturs från positiva x-axeln är 3-kvart. I polär form så vet du att följande gäller:

     r·ei·v=|z3|·ei·arg(z3).

Glöm inte periodiciteten.

Tack, jag har precis börjat eulerisationen av komplexa tal, så det blir säkert mycket mer dumma frågor.

Yngve 4734 – Mattecentrum-volontär
Postad: 12 sep 2017 Redigerad: 12 sep 2017
Daja skrev :
Yngve skrev :

Du söker alla z sådana att

Abs(z^3) = 1

Arg(z^3) = 3pi/2

Beloppet av z ska vara 1 och argumentet v ska vara sådant att 3v = 3pi/2 + n*2pi.

Välj de n som gör att 0 <= v < 2pi.

Så argument blir pi/2 och upprepas varje 120grader...

Ja ... men aj! ...vad ont det gör i ögonen av att se dig blanda radianer och grader.

dajamanté 2476
Postad: 13 sep 2017

Jo, jag applicerar den moderna matematiska origorösitet :)

Svara Avbryt
Close