10 svar
80 visningar
erze7811 är nöjd med hjälpen
erze7811 17
Postad: 18 sep 18:15

Skapa en generell metod för a,b och k

Jag ska skapa en generell metod för att bestämma konstanterna a b och k i funktionen f(x) = k(x + a)^2  +  b när en viss graf är given. Första delen av uppgiften var att beskriva hur konstanterna påverkar en viss graf och fick då reda på att a påverkar hur grafen är försjuten i x led och b i yled sam k avgör om grafen har maximi/minimipunkt.

Men hur ska jag tänka när jag ska skapa en generell metod när en funktions graf är given? Har testas olika värden på parameterna i geogebra men klarar ej att skapa en metod för att bestämma a b och k

haraldfreij 1210
Postad: 19 sep 09:54

Vad har parabelns extrempunkt för koordinater?

erze7811 17
Postad: 19 sep 10:13

-1,-2

haraldfreij 1210
Postad: 19 sep 10:20

Jag menade i det generella fallet. Med andra ord:

  • Om k är positiv, hur liten kan den första termen bli? Och om k är negativ, hur stor kan den bli? 
  • Vad blir funktionsvärdet då?
  • Vid vilket värde på x inträffar detta?

När du bestämt extrempunktens koordinater kommer du ha fått en metod för att bestämma två av parametrarna. Då kan den tredje bestämmas med hjälp av valfri annan punkt på parabeln.

erze7811 17
Postad: 19 sep 12:01

om k är positiv har grafen en minimipunkt medan om k är negativ har grafen en maximipunkt. När jag ändrar k värdet ser jag att grafen blir "bredare" när k värdet närmar sig 0 från negativa och positiva hållet. Hur ska jag ta redo på hur stor termerna kan bli?

haraldfreij 1210
Postad: 19 sep 15:34

Notera att (x+a)2(x+a)^2 är en kvadrat av ett reellt tal. Har kvadrater några begränsningar i sin värdemängd?

erze7811 17
Postad: 19 sep 16:12

Det kommer alltid vara positiva tal så värdemängden är alltid större eller lika med 0?

haraldfreij 1210
Postad: 20 sep 14:11

Precis. Då kommer två naturliga frågor:

  • När är kvadraten lika med 0?
  • Ser du nån koppling mellan nollstället och den ursprungliga funktionens extrempunkt?
erze7811 17
Postad: 20 sep 19:00

Kvadraten borde va lika med 0 när x=-a, och  att a är ett nollställe eller funktionens maximi/minimipunkt för x koordinaten?

erze7811 17
Postad: 20 sep 19:04

eller om a>0 så blir får extrempunkten x koordinaten -a

haraldfreij 1210
Postad: 23 sep 14:07

Att extrempunktens x-koordinat är -a är sant både för positiva och negativa a. Vad har den för y-koordinat?

Svara Avbryt
Close