Tangent till kurvan
på c) delen förstår jag inte riktigt hur man löser uppgiften. Någon som kan förklara?
Vad är det du inte förstår av lösningen?
Smaragdalena skrev:Vad är det du inte förstår av lösningen?
Förstår inte riktigt hur man fick (2,t,0)
Är du med på att alla punkter på kurvan r(t) = (2,1+t, f(2,1+t)) har x-koordinaten 2 och att z-koordinaten är en funktion endast av y-värdet?
Smaragdalena skrev:Är du med på att alla punkter på kurvan r(t) = (2,1+t, f(2,1+t)) har x-koordinaten 2 och att z-koordinaten är en funktion endast av y-värdet?
japp, det är jag med. Eftersom x är konstant och z är en funktion av x-konstanten och y.
Vad blir funktionen z(y)? Du vet ju att x har värdet 2.
Smaragdalena skrev:Vad blir funktionen z(y)? Du vet ju att x har värdet 2.
det är just detta jag inte förstår, hur kan z(y) vara lika med f'y(2,-1)*y?
Du vet att z=f(2,y) och att f(x,y)=2x+xy+y2. Stoppa in att x = 2 i f(x,y) och förenkla.
Det är inte r(t) som kan beskrivas av z=f'y(2,-1) utan tangenten. Just nu håller vi på att ta fran funktionen z(y) för att kunna beräkna z'(y) och sedan skunna sätta in att x = 2 och y = -1 i derivatan för att få fram tangentens lutning.
Smaragdalena skrev:Du vet att z=f(2,y) och att f(x,y)=2x+xy+y2. Stoppa in att x = 2 i f(x,y) och förenkla.
Det är inte r(t) som kan beskrivas av z=f'y(2,-1) utan tangenten. Just nu håller vi på att ta fran funktionen z(y) för att kunna beräkna z'(y) och sedan skunna sätta in att x = 2 och y = -1 i derivatan för att få fram tangentens lutning.
Jaha okej. z=f(2,y)=4+2y+y^2
z'(y)= 2+ 2y
z'(-1)=0
Då vet vi alltså att x-värdet är 2 för alla punkter på tangenten, och att z=f'y(2,-1)·y=0·y=0. Värdet på y kan vara vad som helst - vi kan t ex kalla det värdet t eller 1+t.
Smaragdalena skrev:Då vet vi alltså att x-värdet är 2 för alla punkter på tangenten, och att z=f'y(2,-1)·y=0·y=0. Värdet på y kan vara vad som helst - vi kan t ex kalla det värdet t eller 1+t.
det var just det jag inte förstod riktigt, varför är z lika med derivatan för y i (2,-1) gånger y?
Repetition av Ma2: En rät linje kan alltid skrivas som t ex z(y) = ky+m, där k är lutningen.
Repetition av Ma3: Lutningen för en rät linje z(y) = z'(y). Lutningen för en tangent till kurvan (y,z(y)) i punkten (w,z(w)) = z'(w).
Smaragdalena skrev:Repetition av Ma2: En rät linje kan alltid skrivas som t ex z(y) = ky+m, där k är lutningen.
Repetition av Ma3: Lutningen för en rät linje z(y) = z'(y). Lutningen för en tangent till kurvan (y,z(y)) i punkten (w,z(w)) = z'(w).
Tackar!
Fast svaret borde bli att linjen är s(t) = (2,t,3) eftersom vi vet att punkten (2,-1,3) ligger på tangenten.