9 svar
110 visningar
nilson99 är nöjd med hjälpen!
nilson99 98
Postad: 4 apr 2019

trig funktion

Svar pi/3 

ingen aning hur man löser, vet knappt hur jag ska få ut antiderivatan

Egocarpo 531
Postad: 4 apr 2019

Okey vi ska börja någonstans. Vet du vad vi vill få fram?

AlvinB 3215
Postad: 4 apr 2019 Redigerad: 4 apr 2019

Är du med på att du skall ta reda på derivatans nollställen och sedan undersöka om de är minimipunkter?

För att få fram f'(x)f'(x) kan kanske följande derivator vara till hjälp:

ddx[tanx]\dfrac{d}{dx}[\tan\left(x\right)]

ddx[1tan(x)]\dfrac{d}{dx}[\dfrac{1}{\tan(x)}]

Är det här verkligen en Ma4-uppgift? /moderator

Laguna 5708
Postad: 4 apr 2019

Antiderivata är ett annat namn på primitiv funktion - det står andraderivata.

nilson99 98
Postad: 4 apr 2019
Smaragdalena skrev:

Är det här verkligen en Ma4-uppgift? /moderator

Frågan är från matematik- och fysikprovet år 2012 och proven kräver ma4 och fy2

Albiki 4226
Postad: 4 apr 2019

Det första jag noterar är att det är onödigt att bestämma funktionen ff för att lösa uppgiften; det räcker att studera derivatan f'f' eftersom det är derivatans nollställen som är intressanta.

Kring ett lokalt minimum går f'(x)f'(x) från ett negativt värde till ett positivt värde då xx passerar från vänster till höger. Det betyder att kring ett lokalt minimum är f'(x)f'(x) en växande funktion, vilket säger att i närheten av ett lokalt minimum är andraderivatan f''(x)f''(x) positiv. 

Du vet hur andraderivatan ser ut. För vilka xx är den positiv?

nilson99 98
Postad: 4 apr 2019
Egocarpo skrev:

Okey vi ska börja någonstans. Vet du vad vi vill få fram?

Vi skall få fram alla lösningar i det givna intervallet som också är lokala minimipunkter (nollställen). Men hur ska jag få ut f’(x)? Förstår att man kan få fram nollställena via f’ men jag har ingen aning om hur man tar integralen av f”(x)

Egocarpo 531
Postad: 4 apr 2019 Redigerad: 4 apr 2019

alvinB hade några bra idéer med derivator som är bra att kunna, prova att lösa dem!

 

Om man har en primitiv funktion kan man ju derviera den för att se om den var primitiven till funktionen som man började med.

Gymath 18
Postad: 29 apr 2019

Vart hittar du dem här uppgifterna någonstans?

Svara Avbryt
Close