15 svar
223 visningar
Bryan är nöjd med hjälpen
Bryan 93
Postad: 7 jul 12:15

Trigonometri - Ekvation

Visa att: 1-sin(θ)1+sin(θ=tan2(π4-θ2) 

Hur långt har du kommit?

Bryan 93
Postad: 7 jul 12:36

1-sin(θ)1+sin(θ)= sin2(π4-θ2)cos2(π4-θ2)

beerger 582
Postad: 7 jul 12:51

Då är du väldigt nära

.sin2π4-θ2cos2π4-θ2=sinπ4-θ2×sinπ4-θ2cosπ4-θ2×cosπ4-θ2=tanπ4-θ2×tanπ4-θ2=tan2π4-θ2

Använder detta ^

tanθ=sinθcosθ

Bryan 93
Postad: 7 jul 13:12

Vad är det jag ska tänka på för att använda detta? Har försökt, men jag blir alltid stack. Just nu fick jag fram detta så länge:

sin(θ)×(sin2(π4-θ2)+cos2(π4-θ2)) = cos2(π4-θ2) - sin2(π4-θ2)

 

Vet inte om jag går på rätt väg.

beerger 582
Postad: 7 jul 13:34 Redigerad: 7 jul 13:37
Bryan skrev:

Vad är det jag ska tänka på för att använda detta? Har försökt, men jag blir alltid stack. Just nu fick jag fram detta så länge:

sin(θ)×(sin2(π4-θ2)+cos2(π4-θ2)) = cos2(π4-θ2) - sin2(π4-θ2)

 

Vet inte om jag går på rätt väg.

Var fick du det där ifrån?

 

Du skrev ju att du kommit fram till detta nedan. Då var du ju i princip klar nästan?

 

 sin2π4-θ2cos2π4-θ2

PATENTERAMERA Online 2805
Postad: 7 jul 14:44

Följande formler är användbara här:

sinx = cos(π/2 - x)

cos2(x/2) = (1 + cosx)/2

sin2(x/2) = (1 - cosx)/2

tanx = sinx/cosx

Bryan 93
Postad: 7 jul 15:55

Var jag det? jag har ingen aning om vad jag ska göra efter sin2(π4-θ2)cos2(π4-θ2) i sånna fall. 

Laguna 15972
Postad: 7 jul 16:41 Redigerad: 7 jul 16:42

Jag tror att Bryan har kommit fram till att 1-sin(θ)1+sin(θ)=tan2(π4-θ2)1-sin(θ)1+sin(θ)=sin2(π4-θ2)cos2(π4-θ2)\frac{1-\sin(\theta)}{1+\sin(\theta)} = \tan^2(\frac{\pi}{4}-\frac{\theta}{2}) \Rightarrow \frac{1-\sin(\theta)}{1+\sin(\theta)} = \frac{\sin^2(\frac{\pi}{4}-\frac{\theta}{2})}{\cos^2(\frac{\pi}{4}-\frac{\theta}{2})}.

Ebola 2426
Postad: 7 jul 18:55 Redigerad: 7 jul 19:05

Edit: Såg att PM redan angett bra identiter. Lägger mina under spoiler då de är lite för ledande.

Visa spoiler

Känner du till följande identiteter:

tan12θ=1-cos(θ)sin(θ)\tan\left(\dfrac{1}{2} \theta \right) = \dfrac{1-\cos(\theta)}{\sin(\theta)}

cos(π2-θ)=sin(θ)\cos(\dfrac{\pi}{2}-\theta)= \sin(\theta)

sin(π2-θ)=cos(θ)\sin(\dfrac{\pi}{2}-\theta)= \cos(\theta)

Den första kan kanske vara ovanlig men kommer från motsvarande "halva vinkel"-formler du kan härleda enkelt från dubbla vinkeln-formlerna.

beerger 582
Postad: 7 jul 20:13
Bryan skrev:

Var jag det? jag har ingen aning om vad jag ska göra efter sin2(π4-θ2)cos2(π4-θ2) i sånna fall. 

Jag skrev ju exakt hur du kan göra?  Se den tredje kommentaren.

Ebola 2426
Postad: 7 jul 20:17
beerger skrev:
Bryan skrev:

Var jag det? jag har ingen aning om vad jag ska göra efter sin2(π4-θ2)cos2(π4-θ2) i sånna fall. 

Jag skrev ju exakt hur du kan göra?  Se den tredje kommentaren.

Det Bryan gjort är att skriva om högerledet och dina tips tar tillbaka denne till ruta ett.

beerger 582
Postad: 7 jul 20:19 Redigerad: 7 jul 20:19
Ebola skrev:
beerger skrev:
Bryan skrev:

Var jag det? jag har ingen aning om vad jag ska göra efter sin2(π4-θ2)cos2(π4-θ2) i sånna fall. 

Jag skrev ju exakt hur du kan göra?  Se den tredje kommentaren.

Det Bryan gjort är att skriva om högerledet och dina tips tar tillbaka denne till ruta ett.

Haha såklart :p, borde ha upptäckt det. Trodde han hade kommit till det steget... Ber om ursäkt för min förvirring!

Bryan 93
Postad: 7 jul 23:17

Okej, men kan någon ge en lite mer exakt ledtråd på vad nästa steg är efter 1-sin(θ)1+sin(θ)=sin2(π4-θ2)cos2(π4-θ2). Jag har verkligen ingen aning om vilka exakta formel jag ska använda mig av i nästa steg... 

Jan Ragnar 261
Postad: 8 jul 00:41

Ebola 2426
Postad: 8 jul 21:32 Redigerad: 8 jul 21:39
Bryan skrev:

Okej, men kan någon ge en lite mer exakt ledtråd på vad nästa steg är efter 1-sin(θ)1+sin(θ)=sin2(π4-θ2)cos2(π4-θ2). Jag har verkligen ingen aning om vilka exakta formel jag ska använda mig av i nästa steg... 

Det finns många olika sätt men jag skulle använda:

Du kommer då fram till något som är väldigt nära det slutliga resultatet. Du har för täljaren exempelvis:

sin2π4-θ2=sin212π2-θ=1-cos(π2-θ)2\sin^2\left(\dfrac{\pi}{4}-\dfrac{\theta}{2}\right) = \sin^2\left(\dfrac{1}{2}\left(\dfrac{\pi}{2}-\theta\right)\right) = \dfrac{1-\cos(\dfrac{\pi}{2}-\theta)}{2}

Svara Avbryt
Close