Vad är skillnaden mellan kraftjämvikt och momentjämvikt?
Jag förstår inte skillnaden.. är det inte i princip samma sak?
Momentjämvikt handlar om att vrida något, det gör inte kraftjämvikt.
Kraftjämvikt: summan av alla krafter skall vara lika med 0.
Momentjämvikt: summan av kraften*momentarmen för alla krafter skall vara lika med 0
Om vi tar en gungbräda som exempel:
Kraftjämvikt: Kraften uppåt från stödet i mitten måste vara lika stor som summan av tyngden för de båda som gungar + brädans tyngd
Momentjämvikt: Kraft*hävarm ( d v s mg*l) skall vara lika för de båda som gungar (om man räknar med tecken)
är inte kraftmoment och momentjämvikt typ samma sak då?
Nej, det är inte samma sak. Jag redigerade mitt förra inlägg medan du skrev ditt, tydligen:
Om vi tar en gungbräda som exempel:
Kraftjämvikt: Kraften uppåt från stödet i mitten måste vara lika stor som summan av tyngden för de båda som gungar + brädans tyngd
Momentjämvikt: Kraft*hävarm ( d v s mg*l) skall vara lika för de båda som gungar (om man räknar utan tecken)
men kraftmoment=vridmoment dvs en krafts förmåga att vrida ett föremål kring en axel men du säger att kraftjämvikt inte handlar om att vrida något nu hänger jag inte med
Ett moment är en kraft (i Newton) gånger en sträcka (i meter). Enheten för moment är därför
En kraft anges i Newton ()
Att säga att och är samma sak går inte, de har inte ens samma enhet och är inte samma sak.
Om summan av alla krafter noll råder kraftjämvikt.
Om summan av alla moment noll råder momentjämvikt.
Jroth skrev:Ett moment är en kraft (i Newton) gånger en sträcka (i meter). Enheten för moment är därför
En kraft anges i Newton ()
Att säga att och är samma sak går inte, de har inte ens samma enhet och är inte samma sak.
Om summan av alla krafter noll råder kraftjämvikt.
Om summan av alla moment noll råder momentjämvikt.
så man kan säga att momentjämvikt är när den har en vridande axel som är i jämvikt dvs vila men om vi snackar kraftmoment då behöver det inte vara att alla krafter är 0? bara kraftjämvikt är alla krafter 0?