7 svar
130 visningar
Pompan 61
Postad: 11 jul 2019

Approximation av e mha logaritmer

Visa att 2<e<4 genom att sätta x=2 i olikheterna x-1x<lnx<x-1 för x>0, x1 och använda sambandet lne = 1


Börjar med att visa att e>2 genom att göra precis som man är uppmanad:

x=2:2-12=12<ln2<2-1=112<ln2<1 e12<eln2<e1e<2<e


Sen tänkte jag att man kunde visa att e<4 på samma vis som innan fast med x = 4. Här verkar jag dock inte se någon lösning.

x=4:4-14=34<ln4<4-1=3e34<eln4=4<e3

 

Är det möjligtvis rätt lösningsmetodik, eller bör jag prova annat?

e<2e<22\sqrt{e} < 2 \Rightarrow e < 2^2

Kvadrering på olikheter är också en metod. 

Pompan 61
Postad: 11 jul 2019
SeriousCephalopod skrev:

e<2e<22\sqrt{e} < 2 \Rightarrow e < 2^2

Kvadrering på olikheter är också en metod. 

Sant. Men måste man inte visa att detta stämmer genom en kontroll då, eftersom det är implikation?

Hur menar du?

Pompan 61
Postad: 11 jul 2019 Redigerad: 11 jul 2019
SeriousCephalopod skrev:

Hur menar du?

e<2 e<4±e<2

? Kan vara jag som hakar upp mig på okunskap om olikheter.

Dock så stämmer iofs båda fallen här.

Varför sätter du dit ett ±\pm? Det behövs inte. Det SeriousCephalopod skriver är korrekt.

Förmodligen blandar du ihop det med att man inte kan "tillämpa en implikation baklänges" - om det hade handlat om att du skulle dra roten ur kvadraten på något, skulle du behöva sätta ut ±\pm. När du som i detta fall skall kvadrera något, är detta inte nödvändigt.

Pompan 61
Postad: 2 dagar sedan

Ah, det gör jag nog. Så om jag haft en situation där jag skulle dra roten ur kvadraten på något (även utan kvadraten eller en större potens?) skulle jag behöva sätta ut ± och därefter göra en kontroll för att se vilket/vilka tecken som gäller. Men inte i detta fall då jag går kvadrerar något (men implikations gäller i båda fallen).

Förstår jag rätt då?

I så fall ska det ju räcka med utvecklingen 

e<2<e ger2<e,e<2 e<4

i detta fall.

SeriousCephalopod Online 1805
Postad: Igår Redigerad: Igår

Det låter för mig som att du behöver rota dina konceptioner av olikheter mer i representationer och intuition än i mekaniska scheman såsom "först ska man göra X och sedan Y". 

Hela operationen är inte i sig mer komplicerad än att säga att om en sträcka A är mindre än en sträcka B så måste en kvadrat med A som sida vara mindre än en kvadrat med B som sida. 

och omvänt: att om en kvadrat är större (har mer area) än en annan kvadrat så är dess sida också större. Negativa tal har inget med saken att göra i sig utan kan involveras som en eftertanke om man håller på med problem där negativa tal är relevanta. 

Svara Avbryt
Close