18 svar
112 visningar
hanar 106
Postad: 9 nov 2018

Differenrialekvation

 vad jag gör för fel! I facit svaret är  1/6 x^2 + 17/6

 

Laguna 1299
Postad: 9 nov 2018

Vad är y'(x)?

woozah 879
Postad: 9 nov 2018

Det verkar som du har att 3y'=x3y'=x med begynnelsevillkor y(-1)=3y(-1)=3. Du vet att y'=x3y'=\frac{x}{3}. Integrera och sätt in begynnelsevillkor.

hanar 106
Postad: 9 nov 2018

Är jag på rätt väg! Det ser konstigt ut!

woozah 879
Postad: 9 nov 2018 Redigerad: 9 nov 2018
hanar skrev:

Är jag på rätt väg! Det ser konstigt ut!

Jag skulle nog snarare skriva 3y'=xy'=x33y'=x \leftrightarrow y'=\frac{x}{3}

Sedan får du x3dx\int \frac{x}{3}dx, som inte är x23+C\frac{x^2}{3}+C..(vad händer med nämnaren...?)

 

Sedan sätter du in begynnelsevillkoret.

hanar 106
Postad: 9 nov 2018
woozah skrev:
hanar skrev:

Är jag på rätt väg! Det ser konstigt ut!

Jag skulle nog snarare skriva 3y'=xy'=x33y'=x \leftrightarrow y'=\frac{x}{3}

Sedan får du x3dx\int \frac{x}{3}dx, som inte är x23+C\frac{x^2}{3}+C..(vad händer med nämnaren...?)

 

Sedan sätter du in begynnelsevillkoret.

 Jaså det är den som jag inte fattar, vad händer med nämnaren!?

Laguna 1299
Postad: 4 dagar sedan

Vad är den primitiva funktionen till y(x) = x?

Albiki 2752
Postad: 4 dagar sedan

Hej!

Ja, du är på rätt väg. Med din metod får jag

    3y'(x)dx=xdx+C3y(x)=0.5x2+C.\int 3y'(x) dx = \int x dx + C \iff 3y(x) = 0.5x^2 + C.

Konstanten CC bestäms av villkoret y(-1)=3y(-1) = 3.

hanar 106
Postad: 3 dagar sedan

Jag lyckades inte med denna fråga tyvärr😞 kan nån vara snäll och vissa rätt steg? 

Laguna 1299
Postad: 3 dagar sedan

Vad är svaret på min fråga? 

hanar skrev:

Jag lyckades inte med denna fråga tyvärr😞 kan nån vara snäll och vissa rätt steg? 

 Var någonstans har du kört fast? Hur långt har du kommit?

Har du tagit fram ett uttryck för derivatan y'(x)?

hanar 106
Postad: 3 dagar sedan
Smaragdalena skrev:
hanar skrev:

Jag lyckades inte med denna fråga tyvärr😞 kan nån vara snäll och vissa rätt steg? 

 Var någonstans har du kört fast? Hur långt har du kommit?

Har du tagit fram ett uttryck för derivatan y'(x)?

 Så långt jag kört som det finns på bilden jag visat innan, jag fastna ju!

Albiki 2752
Postad: 3 dagar sedan
hanar skrev:

Jag lyckades inte med denna fråga tyvärr😞 kan nån vara snäll och vissa rätt steg? 

Du verkar inte ha förstått mitt inlägg; det ger

    3y(-1)=0.5·(-1)2+C3·3=0.5+CC=0.5-9=-8.53y(-1) = 0.5\cdot(-1)^2+C \iff 3\cdot 3 = 0.5+C \iff C = 0.5-9 = -8.5.

Den sökta lösningen är därför

    3y(x)=0.5x2-8.5y(x)=0.5x2/3-8.5/3.3y(x) = 0.5x^2-8.5 \iff y(x) = 0.5x^2/3 - 8.5/3.

hanar skrev:
Smaragdalena skrev:
hanar skrev:

Jag lyckades inte med denna fråga tyvärr😞 kan nån vara snäll och vissa rätt steg? 

 Var någonstans har du kört fast? Hur långt har du kommit?

Har du tagit fram ett uttryck för derivatan y'(x)?

 Så långt jag kört som det finns på bilden jag visat innan, jag fastna ju!

 Det du har skrivit där är fel, därför försöker jag hjälpa dig att hamna på rätt väg. Jag upprepar: Vad är derivatan y'(x)y'(x)? (Det har du svarat rätt på tidigare.)

hanar 106
Postad: 3 dagar sedan
Smaragdalena skrev:
hanar skrev:
Smaragdalena skrev:
hanar skrev:

Jag lyckades inte med denna fråga tyvärr😞 kan nån vara snäll och vissa rätt steg? 

 Var någonstans har du kört fast? Hur långt har du kommit?

Har du tagit fram ett uttryck för derivatan y'(x)?

 Så långt jag kört som det finns på bilden jag visat innan, jag fastna ju!

 Det du har skrivit där är fel, därför försöker jag hjälpa dig att hamna på rätt väg. Jag upprepar: Vad är derivatan y'(x)y'(x)? (Det har du svarat rätt på tidigare.)

 I detta fall är y' (x) = 1, tror jag!

I detta fall är y' (x) = 1, tror jag!

Nej.

Du vet att 3y'(x)=x3y'(x)=x. Vad är y'(x)y'(x)?

hanar 106
Postad: 3 dagar sedan
Smaragdalena skrev:

I detta fall är y' (x) = 1, tror jag!

Nej.

Du vet att 3y'(x)=x3y'(x)=x. Vad är y'(x)y'(x)?

y'(x) = (1/3)  x^2

Bubo 2869
Postad: 3 dagar sedan

Nejnej. Det är hundra gånger lättare än du tror.

Jag skriver nästan samma ekvation, men med en annan symbol än y'(x).

Lös bara denna ekvation nu:

3p = x

Vad är p ?

hanar 106
Postad: 59 minuter sedan
Bubo skrev:

Nejnej. Det är hundra gånger lättare än du tror.

Jag skriver nästan samma ekvation, men med en annan symbol än y'(x).

Lös bara denna ekvation nu:

3p = x

Vad är p ?

 Aa det är lätt egentligen, jag missat bara Att gångar (2*3) på nämnaren 🤦🏼‍♀️

Svara Avbryt
Close