23 svar
174 visningar
BrorValter är nöjd med hjälpen
BrorValter 11
Postad: 3 jan 14:52

Integraler. Envariabelanalys!

Hej! Efter att hängt här i flera års tid var det dags för mig att skapa ett konto och be om hjälp. 

Kursen jag läser är flervariabelanalys men jag tror att detta problemet egentligen ligger inom kursen endimensionell. 

 

Såhär ser ekvationen ut.01r31-r2 dr

Jag använder substitution och väljer ett värde på U. 

. U=1-r2 r2= 1-Ur=1-USen vill jag ändra dr till du. dUdr= -2rDetta ger dr= 1-2r  duNu får jag hela min ekvation till .obs. Har räknat om intervallet också för att passa dU. 12(1-U)3×U × 12(1-U) dU

Härifrån har jag suttit och försökt lösa uppgiften vidare i 2,h timme utan framgång. Jag har testat att försöka lösa den utan att blanda in 1/2r dU i funktionen och att även räkna med den. 

Detta ska alltså bli 2/15. 

 

Min fråga lyder: Ser min uppställning ok ut eller är det något jag missat? 

naytte Online 3490
Postad: 3 jan 15:14 Redigerad: 3 jan 15:18

Jag är lite fundersam angående din faktor U. Det borde väl vara roten ur U?

Men jag tror en trigonometrisk substitution är mer passande här. T.ex. r=sinx

BrorValter 11
Postad: 3 jan 15:27

Tack för svar. Min faktor U kan nog vara båda två. Valde U till detta, men kan testa att sätta den under roten ut. 

Jo alltså har använt polära koordinater för att hamna här. Detta är bara ett utplock ur en uppgift. Detta är från början en dubbelintegral. 

naytte Online 3490
Postad: 3 jan 15:38 Redigerad: 3 jan 15:39

Okej. Jag är osäker på om det där med att du använt polära koordinater förändrar något. Där är jag för okunnig. Men jag tror ett minustecken samt ett rottecken har försvunnit i din omskrivning.

Jag har en känsla av att den trigonometriska subben jag föreslog skulle kunna fungera. För då får du ju: 

sin^3(x)*cosx*dr och dr är ju samma sak som cosx*dx. Så det känns som om det gömmer sig någon trevlig identitet här. I värsta fall kanske du får köra på partiell integrering. Men känslan kan ju förstås ha fel.

BrorValter 11
Postad: 3 jan 15:41

Tack! Jag ska testa detta.

BrorValter 11
Postad: 3 jan 15:44

Jag har dock redan använt r*sin(a) för att få ut intervallet i radianer. Därför jag var inne på just substitution. Men ska börja om och se om det blir enklare genom att inte dela upp. 

naytte Online 3490
Postad: 3 jan 15:52 Redigerad: 3 jan 15:52

Du skulle nog t.om. kunna u-subba trigsubben. Integralen blir ju:

int[sin^3(x)*cos^2(x)]dx

om du ansätter sin^2(x)=u verkar det bli trevligt. Men jag sitter på mobilen just nu så saknar tillgång till papper och penna.

PATENTERAMERA 5240
Postad: 3 jan 15:53

Ett alternativ är att sätta

r = sinu.

naytte Online 3490
Postad: 3 jan 15:57 Redigerad: 3 jan 15:57

@patenteramera
Ah, det blir samma som det jag föreslog, eller hur? Betryggande i sådana fall!

BrorValter 11
Postad: 3 jan 16:01

Vet inte riktigt om jag hänger med. Hur kan jag sätta U=sin^2(x) när jag enbart har r? 

naytte Online 3490
Postad: 3 jan 16:02

Mitt förslag är följande:

du har en integral i termer av r. Börja med att ansätta r=sinx. Skriv sedan om integralen i termer av x. Sedan kan du antagligen antingen utnyttja någon identitet eller göra en ytterligare substitution.

BrorValter 11
Postad: 3 jan 16:09

sin3(x)×cos(x)×1cos(x)dsin Ungefär såhär? Och sen tar jag ut primitiva funktionen gissar jag. Hur förändras mina intervall nu? 

naytte Online 3490
Postad: 3 jan 16:12 Redigerad: 3 jan 16:14

Nej, nu verkar något ha gått lite snett. Det borde väl bli:

sin3xcos2x dx\displaystyle \int \sin^3 x \cos^2 x \;\mathrm{d}x 

?

BrorValter 11
Postad: 3 jan 16:15

Behöver jag inte ändra r=sinx med avseende på dr?  Hur får du det till dx igen? 

Använder du trigometriska ettan eller hur får du ut cos2x? 

ItzErre 1571
Postad: 3 jan 16:16

Testa x=r^2

naytte Online 3490
Postad: 3 jan 16:17 Redigerad: 3 jan 16:23

Om r=sinx kommer dr=cosxdx. Ja, trigettan.

alltså först ger trigettan i integranden cosx och dr=cosx*dx så sammantaget får vi integralen jag skrev. Gränserna borde inte vara så problematiska att ändra.

BrorValter 11
Postad: 3 jan 16:56

sin3(x)×cos(x) × cos(x)dx ? I din integral var väl inte cos(x) dx med också? 

BrorValter 11
Postad: 3 jan 16:58
ItzErre skrev:

Testa x=r^2

Jag testade men tyckte den blev krånglig när jag skulle gå från dr till dx. 

ItzErre 1571
Postad: 3 jan 17:01

x=r2dx=2r drdr = dx2rGer 12x1-x dx

Något sånt här tänker jag mig 

PATENTERAMERA 5240
Postad: 3 jan 17:22
BrorValter skrev:

sin3(x)×cos(x) × cos(x)dx ? I din integral var väl inte cos(x) dx med också? 

Visa spoiler

BrorValter 11
Postad: 3 jan 17:24
PATENTERAMERA skrev:
BrorValter skrev:

sin3(x)×cos(x) × cos(x)dx ? I din integral var väl inte cos(x) dx med också? 

Visa spoiler

Tusen tusen tack!! 

BrorValter 11
Postad: 4 jan 14:39
BrorValter skrev:
PATENTERAMERA skrev:
BrorValter skrev:

sin3(x)×cos(x) × cos(x)dx ? I din integral var väl inte cos(x) dx med också? 

Visa spoiler

Tusen tusen tack!! 

Du får verkligen ursäkta mig. Inser att jag behöver en ordentlig repetition från endimensionell analys för att jag ska fixa flervariabel nu. Var två år sedan jag läste förra kursen. 

Men hur går du från steg 3 till steg 4? 

naytte Online 3490
Postad: 4 jan 15:53 Redigerad: 4 jan 16:38

du·-sinu=d(cosu)\displaystyle \mathrm{d}u\cdot-\sin u=\mathrm{d}(\cos u)

Hänger du med om du vet detta?

PATENTERAMERA 5240
Postad: 4 jan 16:52 Redigerad: 4 jan 16:53

Om du vill vara tydligare så kan du göra ett variabelbyte till.

Sätt cosu = -t. sinudu = dt. Gränser:  t går från -1 till 0.

-101-t2t2dtt33-t55-10= 1/3 - 1/5 = 2/15.

Svara Avbryt
Close