5 svar
69 visningar
Plugghingsten är nöjd med hjälpen
Plugghingsten 381
Postad: 30 okt 2019 15:34 Redigerad: 30 okt 2019 16:11

Rekursionsekvationer

"Bestäm explicit form till en=en-1-2, e1=0."

Jag får fram rätt svar m.h.a. backtracking men inte med användning av karakteristiska ekvationen.

/🐎

dr_lund 1213
Postad: 30 okt 2019 15:47 Redigerad: 30 okt 2019 15:47

Nja Du ska väl ha

u·11=0u\cdot 1^1=0 ? Men det förändrar väl inget

Plugghingsten 381
Postad: 30 okt 2019 15:55

Ja, såklart, @dr_lund. Tack för noteringen. Som du säger, det förändrar dock inte att jag får fram en ekvation vilket jag tycker jag ändå bör få. Genom backtracking får jag fram en.

Plugghingsten 381
Postad: 30 okt 2019 16:05

Jag får det inte till att stämma...

Det hade lett till olika ekvationer för varje e.

Smaragdalena 57657 – Lärare
Postad: 30 okt 2019 17:24

Varför krångla till det?

en=en-1-2, e1=0

e2=0-2=-2

e3=-2-2=-4

e4=-4-2=-6

Rita upp eller "se det i huvudet". Du får en rät linje e=-2n+2 eller e=-2(n-1) om du föredrar det.

Om meningen med uppgiften är att lära sig metoden, förstår jag anledningen till krånglet.

dr_lund 1213
Postad: 30 okt 2019 18:49

Ett försök till metodisk lösning (jfr lösning av inhomogen diff.ekv.)

Svara Avbryt
Close