18 svar
435 visningar
Qetsiyah 2503
Postad: 11 mar 2020 Redigerad: 11 mar 2020

Vad är en tensor?

Var god, förklara som om jag var två år gammal.

Jag har läst wikipedia, det står:

In mathematics, a tensor is an algebraic object that describes a (multilinear) relationship between sets of algebraic objects related to a vector space.

Men... Det förstår jag inte. Jag har även googlat "tensors for dummies" men fattar inte.

mattetanten 67 – Admin
Postad: 11 mar 2020
Qetsiyah skrev:

Var god, förklara som om jag var två år gammal.

Jag har läst wikipedia, det står:

In mathematics, a tensor is an algebraic object that describes a (multilinear) relationship between sets of algebraic objects related to a vector space.

Men... Det förstår jag inte. Jag har även googlat "tensors for dummies" men fattar inte.

Vet inte om denna förklaring kan vara till hjälp i väntan på ett bättre svar: https://it-ord.idg.se/ord/tensor/ 

PATENTERAMERA 1049
Postad: 12 mar 2020

Tyvärr, finns det inget enkelt svar på denna fråga.

Varje disciplin verkar ha sin egen definition av tensor, och det tar år innan man förstår hur de olika definitionerna hänger samman.

Inom fysik definieras ofta en tensor som något vars komponenter transformeras som en tensor vid koordinatbyten. Alltså, en anka är ett djur som beter sig som en anka. En praktisk definition, men kanske lite otillfredsställande. Och det gör att man tror att en tensor nödvändigtvis har något med koordinatsystem att göra, vilket är lite begränsande.

Inom fysik är det även vanligt att definiera en tensor som en multilinjär funktion.

Inom kontinuum-mekanik definierar man ofta en andra ordningens tensor som en linjär operator.

Vad jag förstår, så baseras tensorer i ren matematik på kategoriteori, vilket jag har väldigt usel insikt i. Så här får någon matematiker fylla i.

dioid 147
Postad: 14 mar 2020 Redigerad: 14 mar 2020

Jag kan inte förklara på en tvåårings nivå, men jag antar att du kan lite linjär algebra i alla fall (annars borde du inte kommit i kontakt med begreppet tensor).

Betrakta ett vektorrum V över en kropp K (om du inte vet vad en kropp är, så tänk dig reella eller komplexa tal, dvs dina skalärer). Då har du till att börja med två slags objekt:

0) skalärer, det är elementen i K, de är i en viss mening 0-dimensionella, de har ingen riktning, det är en tensor av ordning 0

1) vektorer, de är i en viss mening 1-dimensionella, en vektor spänner upp ett 1-dimensionellt underrum, det är en (kontravariant) tensor av ordning 1

Nu kom ordet kontravariant så kanske dags att säga vad det annars är, kovariant, dvs kovektorer, så då kommer nästa objekt som du kan härleda från de två:

1') kovektorer, linjära funktionaler, dvs linjära funktioner från V till K, det är en (kovariant) tensor av ordning 1

Mängden av kovektorer bildar också ett vektorrum, dualrummet till V, V*, med samma dimension (om V har ändlig dimension). Försöker vi göra samma trick en gång till, dvs funktionaler från V* till K så visar det sig att det kan identifieras med V (om V har ändlig dimension), så dubbeldualen till V är isomorf med V. Identifieringen är att om f är en kovektor så är v(f) = f(v), dvs ett element i dualen till V* identifieras med ett element i V som jag kallade v och den funktionen v verkande på kovektorn f är med identifieringen samma som kovektorn f verkande på vektorn v.

Praktiska exempel på kovektorer är gradienten till en (olinjär) funktion f av en vektor. Annat exempel är koordinatfunktionerna till en vektor (om man fixerar en bas), en vektor v har som första koordinat x1(v), då är x1 en kovektor. På det sättet kan man tänka sig basvektorerna som kovektorer också.

Lite mer konkret så kan man skriva kontravarianta vektorer som kolumnvektorer och kovarianta vektorer som radvektorer och matrisprodukten ger då den linjära funktionalen då en kovektor verkar på en kontravariant vektor. Mer allmänt för tensorer brukar man ha kontravarianta index som superscript och kovarianta index som subscript och använda Einsteins summationskonvention för att slippa skriva summatecken överallt (index uppe med samma namn som index nere betyder summation över index från 1 till n där n är dimensionen på vektorrummet V).

Här kommer vi in på det där med basbyte också, om du byter till en ny bas f = eT med basbytesmatris T så transformeras koordinaterna X för en kontravariant vektor eX till koordinaterna Y i den nya basen med inversen till T. eX = fT^(-1)X = fY, dvs Y = T^(-1)X. Det är det som är "kontra" (motsatt), dvs koordinaterna transformeras motsatt (med inversen) till basvektorerna med basbytesmatrisen.

Då är vi redo för nästa objekt:

2) Linjära avbildningar från V till V, de tar en kontravariant vektor in och ger en kontravariant vektor ut, vi kallar det ordning (1,1) eller ordning 2 (=1+1).

En linjär avbildning med matrisen A i basen e har i basen f = eT matrisen T^(-1)AT, den transformeras kontravariant i ena index (kolumn) och kovariant i andra index (rad).

Det finns även andra varianter på ordning 2:

2') En kvadratisk form på V, den tar två kontravarianta vektorer in och ger en skalär ut, vi kallar den ordning (2, 0) eller ordning 2.

På samma sätt kan man definiera mer allmänt (multi-)linjära funktioner (linjära i varje argument) som tar p kovarianta vektorer och q kontravarianta vektorer och ger en skalär som resultat, det är en tensor av ordning (p, q), eller ordning p+q

Så om du fixerar en bas är en tensor bara en array med p+q index, en matris har två index, rad och kolumn. Men på samma sätt som en matris representerar en linjär avbildning (i en viss bas) så representerar en array med p+q index en tensor (i en viss bas).

Givet en bas, ei, för vektorrummet V så finns en naturlig bas, fj, för dualrummet V* genom att kräva fj(ei) = 0 om i != j och 1 annars.

En tensor från mekaniken är elasticitetstensorn i linjär elasticitetsteori, det är en tensor av ordning 4, den avbildar töjningstensorn (ordning 2) till spänningstensorn (ordning 2) eller nåt sånt, jag kan ha kastat om terminologin lite här, var länge sen jag läste kontinuumsmekanik.

dioid 147
Postad: 14 mar 2020 Redigerad: 14 mar 2020

Jag kanske kan förtydliga lite:

En skalär är en (0,0)-tensor, du kan se det som en funktion som inte tar någon kovariant vekor in och ingen kontravariant vektor in och ger en skalär som resultat

En (kontravariant) vektor är en (0,1)-tensor, du kan se den som en funktion som tar ingen kontravariant vektor in och en kovariant vektor in och ger en skalär ut, resultatet är den kovarianta vektorn applicerad på en kontravarianta vektorn, det är från identifieringen av dubbeldualen av V med V.

På samma sätt är en kovariant vektor en (1,0)-tensor.

En linjär avbildning är en (1,1)-tensor, den tar en kontravariant vektor in och ger en kontravariant vektor ut, men den kontravarianta vektorn ut kan du se som en funktion som tar en kovariant vektor in och ger en skalär ut, så det är en currifiering av funktionen som tar en kontravariant vektor in och en kovariant vektor in och ger en skalär ut

En kvadratisk form är en (2,0)-tensor för den tar två kontravarianta vektorer in och ger en skalär ut

Man kan alltså se en (p,q)-tensor som en funktion som tar k kontravarianta vektorer in och m kovarianta vektorer in och ger en resultat som är en (p-k, q-m)-tensor ut via identifieringen av dubbeldual till V och V.

Alltså kan du även se en linjär avbildning på V som en funktion som tar en kovariant vektor in och ger en kovariant vektor ut, i en fix bas får du multiplikation av matrisen för avbildningen till höger om en radvektor (som inargument) som ger en radvektor som resultat.

Jroth 217
Postad: 14 mar 2020
dioid skrev:

Jag kanske kan förtydliga lite:

En skalär är en (0,0)-tensor,

Ja.

En (kontravariant) vektor är en (0,1)-tensor

Nej.

 

På samma sätt är en kovariant vektor en (1,0)-tensor.

Nej.

Laguna 7672
Postad: 14 mar 2020

Ordet currifiering kanske behöver förklaras.

PATENTERAMERA 1049
Postad: 14 mar 2020

https://m.youtube.com/user/eigenchris/playlists

Hyfsat bra introduktion ovan.

dioid 147
Postad: 15 mar 2020 Redigerad: 15 mar 2020
Jroth skrev:
dioid skrev:

Jag kanske kan förtydliga lite:

En skalär är en (0,0)-tensor,

Ja.

En (kontravariant) vektor är en (0,1)-tensor

Nej.

 

På samma sätt är en kovariant vektor en (1,0)-tensor.

Nej.

Bra fångat, jag kastade om p och q där, texten stämmer och första inlägget stämmer. Dvs

En (kontravariant) vektor är en (1,0)-tensor

En kovariant vektor (en vektor i dualrummet) är en (0,1)-tensor.

Jag gjorde samma fel på den kvadratiska formen, den är en (0,2)-tensor och inte en (2,0)-tensor.

dioid 147
Postad: 15 mar 2020
Laguna skrev:

Ordet currifiering kanske behöver förklaras.

Bra poäng, se Wikipedia:

https://en.wikipedia.org/wiki/Currying

Det handlar om hur man kan se en funktion av två variabler som en funktion av en variabel som returnerar en funktion av andra variabeln, och generalisera det. Det är väl mer en datalogisk term än matematisk och i matematik brukar man se currifierade varianter som "samma sak", om man inte beskriver det kategoriteoretiskt. För mig var det en källa till stor förvirring när jag försökte förstå tensorer första gången, men egentligen är det inget konstigt. Hade underlättat med lite mer tydlighet i att man kan se en tensor på olika sätt genom att se currifierade varianten av tensorn som samma sak.

Laguna 7672
Postad: 15 mar 2020

Om man vill fortsätta bli utmanad kan man titta på programmeringsspråket Haskell och på kategoriteori. Kombinatorer kan man också slå upp.

Men de enklaste tillämpningarna av currifiering i programmering är ganska jordnära. T o m javascript har det som kallas closures.

Nu vet jag inte om jag svävade bort fullkomligt från frågan om tensorer. 

Jroth 217
Postad: 15 mar 2020 Redigerad: 15 mar 2020
dioid skrev:

Bra fångat, jag kastade om p och q där, texten stämmer och första inlägget stämmer. Dvs

Jag gjorde samma fel på den kvadratiska formen, den är en (0,2)-tensor och inte en (2,0)-tensor.

Jag är inte med på vad du menar med kvadratisk form. Låt mig ta ett konkret exempel istället för att hamna i ett träsk av definitioner. Om vi tittar på en (0,2) tensor t.ex. (den förhoppningsvis välbekanta) gjhg_{jh} och låter XpX^p vara komponenterna av ett objekt i Tn(P)T_n(P) så är

Zj=gjhXhZ_j=g_{jh}X^h

komponenterna till en kovariant vektor i Tn*(P)T^*_n(P)

Med g=det(gjh)0g=\det(g_{jh})\neq0 finns det en invers gjkg^{jk} sådan att

gjhgjk=δhkg_{jh}g^{jk}=\delta^k_h

Alltså kan vi säga att

Xk=gjkZjX^k=g^{jk}Z_j

(I förbigående har vi alltså etablerat ett 1-1 förhållande mellan Tn(P)T_n(P) och T*(P)T^*(P)) givet att metriken faktiskt existerar, för en differentierbar mångfald utan metrisk tensor kan man inte etablera ett sådant). Vi kan nu roa oss med att bilda

glkXlXk=glkglhZhgjkZj=δkhZhgjkZj=gjhZjZhg_{lk}X^lX^k=g_{lk}g^{lh}Z_hg^{jk}Z_j=\delta^h_kZ_hg^{jk}Z_j=g^{jh}Z_jZ_h

Jag påstår nu tre saker, 1) Ovanstående ger en ledtråd om hur man kan tolka längden av en kovariant vektor, 2) gjhZjZhg^{jh}Z_jZ_h är lika mycket en kvadratisk form som gjhXjXhg_{jh}X^jX^h och 3) glhg^{lh} är en (2,0)-tensor.

dioid 147
Postad: 16 mar 2020

Det har du rätt i, det finns två kvadratiska former. En (0,2)-tensor som tar kontravarianta vektorer och en (2,0)-tensor som tar kovarianta vektorer och om man har en metrik så hänger de ihop via att lyfta/sänka index.

Jag försökte förklara det från linjär algebra och analysperspektiv med tanke på frågeställaren och tänkte på fallet taylorutveckling av en funktion. Då är gradienten en (0,1)-tensor (dvs en kovariant vektor) och kvadratiska formen i taylorutvecklingen är en (0,2)-tensor.

Ytterligare ett exempel på en (0,2)-tensor är skalärprodukten.

Jag hade inte tänkt dra in differentialgeometri men det är där det blir ännu mer relevant att hålla reda på vad som är kontravariant och kovariant.

dioid 147
Postad: 16 mar 2020

Jag försöker mig på en ytterligare förenklad förklaring av vad en tensor är, för orginalfrågeställaren. Betrakta ett vektorrum V av ändlig dimension över en kropp K.

En tensor har en ordning (p,q) och en (p,q)-tensor kan man (förenklat) se som en (multi)linjär avbildning som tar q vektorer som inargument och ger p vektorer som värde/utdata (inte riktigt sant). Om p=0 är utdata en skalär. Om q=0 tar funktionen inga inargument och är då en "konstant".

Då är en (0,0)-tensor en skalär.

En (1,0)-tensor är en vektor (inget inargument och alltså bara ett möjligt utdatavärde som är en vektor).

En (0,1)-tensor är en linjär funktion som tar en vektor in och ger en skalär ut. Det kallas också linjär funktional. Ex är gradienten till en (olinjär) funktion i en fixerad punkt. Inargumentet är då en rikningsvektor (med längd 1) och utdata är riktningsderivatan i den riktningen. Här finns även som exempel på (0,1)-tensorer koordinatfunktionerna i en given bas, x1(v) ger första koordinaten för v (i den givna basen), x2(v) den andra, osv.

En (1,1)-tensor är en vanlig linjär avbildning, tar en vektor in och ger en vektor ut.

En kvadratisk form (kvadratiska termen i taylorutvecklingen kring en fix punkt) är en (0,2)-tensor där både första och andra vektorn in är samma vektor (förskjutningen i inargumentet från den fixa punkten).

En skalärprodukt är en (0,2)-tensor, den tar två vektorer som inargument och ger en skalär som utdata.

Så du har redan sett en massa tensorer utan att veta om det.

Men det finns ytterligare tolkning av en (p,q)-tensor, du kan se det som att den tar k (<= p) kovarianta vektorer och m (<= q) kontravarianta vektorer som inargument och ger en (p-k,q-m)-tensor som utdata. Här är förklaringen på lögnen i början på den här förenklade förklaringen, det är inte p vektorer som utdata utan en (p,0)-tensor som utdata, dvs en funktion som tar p kovarianta vektorer som inargument och ger en skalär som utdata. När p=1 är det ingen skillnad pga nedanstående:

En (1,0)-tensor v (dvs en vektor) kan du alltså se som en funktion som tar en linjär funktional f (en (0,1)-tensor) som inargument och ger en skalär som resultat, definitionen är v(f) = f(v).

En (1,1)-tensor A kan du då också se som en linjär avbildning från en linjär funktional f till en annan linjär funktional g. Om du ser linjära funktionalerna som vektorer i dualrummet och definierar en bas i dualrummet som är dual till basen i V och skriver dualvektorerna som radvektorer så blir det fA = g, dvs du multiplicerar argumentet till vänster om "matrisen" istället för till höger som med (kontravarianta) vektorer.

Så med den här förenklade förklaringen är en tensor bara en unifiering av begreppen skalär, vektor, gradient, linjär funktional, linjär avbildning, kvadratisk form, skalärprodukt och en generalisering till (multi)linjära funktioner från en uppsättning kovarianta och kontravarianta vektorer till tensorer av lägre ordning.

Så man kan resonera om en (multi)linjär funktion från V till linjära avbildningar, dvs från en kontravariant vektor till en (1,1)-tensor, det blir då en (1,2)-tensor, osv.

Qetsiyah 2503
Postad: 18 mar 2020 Redigerad: 18 mar 2020
dioid skrev:

Jag försöker mig på en ytterligare förenklad förklaring av vad en tensor är, för orginalfrågeställaren. Betrakta ett vektorrum V av ändlig dimension över en kropp K.

En tensor har en ordning (p,q) och en (p,q)-tensor kan man (förenklat) se som en (multi)linjär avbildning som tar q vektorer som inargument och ger p vektorer som värde/utdata (inte riktigt sant). Om p=0 är utdata en skalär. Om q=0 tar funktionen inga inargument och är då en "konstant".

Då är en (0,0)-tensor en skalär.

En (1,0)-tensor är en vektor (inget inargument och alltså bara ett möjligt utdatavärde som är en vektor).

En (0,1)-tensor är en linjär funktion som tar en vektor in och ger en skalär ut. Det kallas också linjär funktional. Ex är gradienten till en (olinjär) funktion i en fixerad punkt. Inargumentet är då en rikningsvektor (med längd 1) och utdata är riktningsderivatan i den riktningen. Här finns även som exempel på (0,1)-tensorer koordinatfunktionerna i en given bas, x1(v) ger första koordinaten för v (i den givna basen), x2(v) den andra, osv.

En (1,1)-tensor är en vanlig linjär avbildning, tar en vektor in och ger en vektor ut.

En kvadratisk form (kvadratiska termen i taylorutvecklingen kring en fix punkt) är en (0,2)-tensor där både första och andra vektorn in är samma vektor (förskjutningen i inargumentet från den fixa punkten).

En skalärprodukt är en (0,2)-tensor, den tar två vektorer som inargument och ger en skalär som utdata.

Okej!

Så du har redan sett en massa tensorer utan att veta om det.

Ja det är trevligt. Så vad är en kryssprodukt då? Vad är en determinant?

Ett ögonblick så söker jag upp "kovariant". (så konstigt att jag inte råkat klicka mig till detta på wikipedia än, jag läser runt och låtsas förstå saker hela tiden).

Qetsiyah 2503
Postad: 18 mar 2020

Jag håller på att stirra på https://en.wikipedia.org/wiki/Covariance_and_contravariance_of_vectors#/media/File:Covariantcomponents.gif

Jag kanske kommer till någon insikt om några minuter... Men jag tänker bara på jacobideterminanten, och mycket riktigt nämns den i wikipediaartikeln, men bara en gång.

oggih 557 – F.d. Moderator
Postad: 24 mar 2020 Redigerad: 26 mar 2020

Det finns som redan nämnts väldigt många ekvivalenta perspektiv på vad en tensor är.

En hyfsat kompakt formulering (som dock kanske inte riktigt bjuder på samma djupa fysikaliska insikter som den formulering som har diskuterats hittills i tråden) lyder som följer.

Definition. Låt VV vara ett ändligt-dimensionellt vektorrum över en kropp 𝔽\mathbb{F} (t.ex. de reella talen eller de komplexa talen). En (p,q)(p,q)-tensorVV är då en multilinjär avbildning

   T:V*×V*p stycken×V×Vq stycken𝔽,\displaystyle T:\underbrace{V^*\times\cdots V^*}_{\text{$p$ stycken}}\times \underbrace{V\times\cdots V}_{\text{$q$ stycken}}\to\mathbb{F}\,,

där V*V* är det så kallade dualrummet till VV, som är mängden av alla linjära avbildningar V𝔽V\to\mathbb{F} (sådana avbildningar kallas ofta för funktionaler) utrustad med punktvis addition och multiplikation med skalärer.  (Övning: Visa att V*V^* är ett vektorrum över 𝔽\mathbb{F}.)

Ett par exempel på funktionaler (övertyga dig gärna om att de verkligen är linjära!):

:3\ell:\mathbb{R}^3\to \mathbb{R} med (a,b,c)=a+b+c\ell(a,b,c)=a+b+c,

ϕ:{reella polynom av grad max n}\phi:\{\text{reella polynom av grad max $n$}\}\to\mathbb{R} med ϕ(p)=p(0)\phi(p)=p(0),

ψ:{reella polynom av grad max n}\psi:\{\text{reella polynom av grad max $n$}\}\to\mathbb{R} med ψ(p)=01p(x)dx\psi{(p)}=\int_0^1 {p(x)}\,\mathrm{d}x.


Exempel 1: Den vanliga skalärprodukten \bullet är ett exempel på en (0,2)(0,2)-tensor på n\mathbb{R}^n, eftersom den är en bilinjär avbildning n×n\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R} med (x,y)xy(\mathbf{x},\mathbf{y})\mapsto \mathbf{x}\bullet \mathbf{y}.


Exempel 2: Determinanten ger upphov till en (0,n)(0,n)-tensor på n\mathbb{R}^n, eftersom vi har en multilinjär avbildning n××n\mathbb{R}^n\times\cdots\times \mathbb{R}^n\to\mathbb{R} med (v1,,vn)det([v1vn])(\mathbf{v}_1,\ldots,\mathbf{v}_n)\mapsto \det([\mathbf{v}_1\,\cdots\,\mathbf{v}_n]).


Exempel 3: Linjära avbildningar VVV\to V kan, med lite välvilja, sägas vara samma sak som (1,1)(1,1)-tensorer på VV.

Idén är följande: Varje linjär avbildning A:VVA:V\to V kan användas för att konstruera en (1,1)(1,1)-tensor TA:V*×V𝔽T_A:V^*\times V\to\mathbb{F}, definierad av (,v)(A(v))(\ell,v)\mapsto \ell(A(v)).

En klassisk övningsuppgift i (en andra kurs i) linjär algebra är att vissa följande saker:

(1) TAT_A är verkligen en multilinjär avbildning.

(2) Varje linjär avbildning A:VVA:V\to V ger på detta vis upphov till en unik (1,1)(1,1)-tensor (dvs. om ABA\neq B så gäller TATBT_A\neq T_B).

(3) Varje (1,1)(1,1)-tensor på VV kan uttryckas som TAT_A för någon linjär avbildning A:VVA:V\to V.

Slutsatsen är att vi har en bijektion (alltså ett 1-till-1-förhållande) mellan mängden av alla linjära avbildningar VVV\to V och mängden av alla (1,1)(1,1)-tensorer på VV (man kan rent av visa att vi får en så kallad isomorfi), vilket gör det typ berättigat att sätta likhetstecken mellan de två begreppen.


Många fler (och mer intressanta!) exempel på tensorer finns i differentialgeometrin och fysiken, och det är när man stöter på dem som själva tensorbegreppet börjar bli verkligt användbart. Ett av den mest berömda exemplen är Riemann-kurvatur-tensorn, som är en (1,3)(1,3)-tensor som finns på tangentrummet i varje punkt på en Riemann-mångfald. Den är intressant ur ett matematiskt perspektiv, men om jag har förstått saken rätt motiveras den främst av att den spelar en central roll i allmän relativitetsteori. (Någon som faktiskt kan något om fysik kan kanske säga något mer om detta?)

PATENTERAMERA 1049
Postad: 26 mar 2020

Väldigt bra och kompakt framställning av oggih.

Om man har en bas ei för V med en tillhörande dual bas εi för V* (ϵi  V* definieras så att ϵi(ej) = δji (Kronecker delta)), så kan kan varje (1,1)-tensor T skrivas mha komponenter Tji enligt 

T = Tjieiεj, här är summering över index i och j implicit (googla Einsteins summakonvention).

Tji  = T(εi, ej)

(eiεj)(ω, v) = ω(ei)εj(v), (ωV*, vV).

Den linjära operatorn A som är kopplad till T i oggihs diskussion kan nu definieras genom

A(v) = Tjiεj(v)ei, summering implicit över båda index igen.

Det är inte svårt att visa att T(ω, v) = ω(A(v)), med denna definition av A.

Man kan även visa att A:s matrisrepresentation M relativt basen ei är kopplad till komponentframställningen av T på ett väldigt enkelt sätt, det är nämligen så att

Mji = Tji.

oggih 557 – F.d. Moderator
Postad: 26 mar 2020 Redigerad: 26 mar 2020

Bra skrivet! Ifall någon skräms av tensorprodukterna och Einstein-konventionen (som dock är väldigt bra att vänja sig vid) så skulle man kanske kunna uttrycka det något i stil med följande:

Låt {e1,,en}\{e_1,\ldots,e_n\} vara en bas för vektorrummet VV. Då är {ε1,,εn}\{\varepsilon_1,\ldots,\varepsilon_n\} en bas för dualrummet V*V^*, där εi\varepsilon_i är definierad så att

   εi(β1e1++βnen)=βi,\varepsilon_i(\beta_1e_1+\cdots+\beta_ne_n)=\beta_i\,,

dvs. εi\varepsilon_i "plockar ut" den ii:te koordinaten för en vektor uttryckt i basen {e1,,en}\{e_1,\ldots,e_n\}.

På samma sätt som en linjär avbildning bestäms av vart den mappar basvektorerna, så bestäms en (1,1)(1,1)-tensor TT på vårt vektorrum VV av vart den mappar alla par av formen (εi,ej)(\varepsilon_i,e_j). Om vi inför beteckningen

   Ti,j=T(εi,ej)T_{i,j}=T(\varepsilon_i,e_j)

så kommer det gälla att

   T(i=1nαiεi,j=1nβjej)=i,j=1nαiβjTi,j.\displaystyle T(\sum_{i=1}^n \alpha_i \varepsilon_i,\sum_{j=1}^n \beta_j e_j)=\sum_{i,j=1}^n \alpha_i\beta_j T_{i,j}\,.

Den motsvarande linjära operatorn A:VVA:V\to V kan nu definieras genom att sätta

   A(ej)=i=1nTi,jei,\displaystyle\, {A(e_j)}=\sum_{i=1}^n T_{i,j} e_i\,,

dvs.

   A(j=1nβjej)=i,j=1nβjTi,jei,\displaystyle A(\sum_{j=1}^n\beta_je_j)=\sum_{i,j=1}^n \beta_j T_{i,j} e_i\,,

vilket, precis som Pantamera påpekar, innebär att det (i,j)(i,j):te elementet i matrisrepresentationen för AA med avseende på basen {e1,,en}\{e_1,\ldots,e_n\} blir just Ti,jT_{i,j}.

Vi ser nu att för varje funktional ω=i=1nαiεi\omega=\sum_{i=1}^n \alpha_i\varepsilon_i och varje vektor v=j=1nβjejv=\sum_{j=1}^n \beta_j e_j så kommer det gälla att

  ω(A(v))=ω(i,j=1nβjTi,jei)=i,j=1nαiβjTi,j=T(ω,v),\displaystyle \,{\omega(A(v))}=\omega (\sum_{i,j=1}^n \beta_j T_{i,j} e_i)=\sum_{i,j=1}^n\alpha_i\beta_j T_{i,j}={T(\omega,v)}\,,

vilket var precis vad vi ville åstadkomma!

Svara Avbryt
Close