11 svar
214 visningar
TB16 är nöjd med hjälpen
TB16 182 – Fd. Medlem
Postad: 27 okt 2018 10:38 Redigerad: 27 okt 2018 11:12

Vilken/vilka av de tre egenskaperna reflexivitet, symmetri och transitivitet har R

EDIT: Jag skrev reflexiv, men menade symmetrisk

Uppgift:

Låt R vara följande relation på Z+: 
R = {(a, b) ∈ 2+ : SGD(a, b) > 1 }.
Vilken/vilka av de tre egenskaperna reflexivitet, symmetri och transitivitet har R ?
Motivera väl!

Fråga:
Jag förstår inte hur den kan vara symmetrisk? Säg att  a = 1, b=1 så får vi
sgd(a,b) = sgd(b,a) = 1 < 2, och kravet är väl att sgd(a,b) > 1 annars så är den inte symmetrisk? 

SeriousCephalopod 2695
Postad: 27 okt 2018 10:45 Redigerad: 27 okt 2018 10:47

Undrar du om reflexivitet eller symmetri? Du byter hallvägs i stycket.

TB16 182 – Fd. Medlem
Postad: 27 okt 2018 11:12
SeriousCephalopod skrev:

Undrar du om reflexivitet eller symmetri? Du byter hallvägs i stycket.

 Jag skrev reflexiv, men menade symmetrisk :) Ändrade det nu

Laguna Online 29665
Postad: 27 okt 2018 12:00

Kriteriet behöver inte vara sant för alla a och b. Det viktiga för symmetri är att om R(a,b) gäller så gör R(b,a) också det, och omvänt. I ditt exempel är relationen falsk för a=1,b=1 och det är den om man byter plats på a och b också. Vilket inte är så konstigt, för de är samma tal, men ta t.ex. a=1,b=2, så blir det ett bättre exempel.

Laguna Online 29665
Postad: 27 okt 2018 12:01

Om du å andra sidan menade reflexivitet, så är a=1,b=1 ett intressant exempel.

TB16 182 – Fd. Medlem
Postad: 27 okt 2018 12:30
Laguna skrev:

Kriteriet behöver inte vara sant för alla a och b. Det viktiga för symmetri är att om R(a,b) gäller så gör R(b,a) också det, och omvänt. I ditt exempel är relationen falsk för a=1,b=1 och det är den om man byter plats på a och b också. Vilket inte är så konstigt, för de är samma tal, men ta t.ex. a=1,b=2, så blir det ett bättre exempel.

 Så vad har vi kriteriet sgd > 1 till om relationen inte behöver gälla för sgd > 1 ?

Smaragdalena 80423 – Lärare
Postad: 27 okt 2018 12:32
TB16 skrev:
SeriousCephalopod skrev:

Undrar du om reflexivitet eller symmetri? Du byter hallvägs i stycket.

 Jag skrev reflexiv, men menade symmetrisk :) Ändrade det nu

 TB16, det står i Pluggakutens regler att man inte får ändra i sin tråd efter att någon harbesvarat de, eftersom hela tråden då blir obegriolig och rörig. Om du skulle skriva nånting som är fel, kan du stryka över det och skriva det rätta efteråt. /moderator

Laguna Online 29665
Postad: 27 okt 2018 13:40
TB16 skrev:
Laguna skrev:

Kriteriet behöver inte vara sant för alla a och b. Det viktiga för symmetri är att om R(a,b) gäller så gör R(b,a) också det, och omvänt. I ditt exempel är relationen falsk för a=1,b=1 och det är den om man byter plats på a och b också. Vilket inte är så konstigt, för de är samma tal, men ta t.ex. a=1,b=2, så blir det ett bättre exempel.

 Så vad har vi kriteriet sgd > 1 till om relationen inte behöver gälla för sgd > 1 ?

Jag förstår inte frågan. Betrakta a=5,b=7, t.ex.

TB16 182 – Fd. Medlem
Postad: 29 okt 2018 07:28
Smaragdalena skrev:
TB16 skrev:
SeriousCephalopod skrev:

Undrar du om reflexivitet eller symmetri? Du byter hallvägs i stycket.

 Jag skrev reflexiv, men menade symmetrisk :) Ändrade det nu

 TB16, det står i Pluggakutens regler att man inte får ändra i sin tråd efter att någon harbesvarat de, eftersom hela tråden då blir obegriolig och rörig. Om du skulle skriva nånting som är fel, kan du stryka över det och skriva det rätta efteråt. /moderator

 Tack för påminnelsen Smaragdalena. Jag skall undvika att begår samma misstag framöver :)

TB16 182 – Fd. Medlem
Postad: 29 okt 2018 07:35
Laguna skrev:

Kriteriet behöver inte vara sant för alla a och b. Det viktiga för symmetri är att om R(a,b) gäller så gör R(b,a) också det, och omvänt. I ditt exempel är relationen falsk för a=1,b=1 och det är den om man byter plats på a och b också. Vilket inte är så konstigt, för de är samma tal, men ta t.ex. a=1,b=2, så blir det ett bättre exempel.

Det jag inte riktigt förstår är hur den inte kan vara reflexiv, men symmetrisk. Behöver kriteriet vara sant för alla a och b när man kontrollerar ifall relationen är reflexiv då?
SGD(4,4) = 4 > 1 -> uppfyller kriteriet, men ändå är den inte reflexiv.

 

Laguna Online 29665
Postad: 29 okt 2018 10:31

Det ska stämma för alla a och b. Reflexiv är strängare än symmetrisk, kan man säga, för symmetrisk betyder att R(a,b) ska ha samma sanningsvärde, sant eller falskt, som R(b,a), för alla a och b. Reflexiv betyder att R(a,a) ska vara sann, för alla a.

TB16 182 – Fd. Medlem
Postad: 30 okt 2018 09:04
Laguna skrev:

Det ska stämma för alla a och b. Reflexiv är strängare än symmetrisk, kan man säga, för symmetrisk betyder att R(a,b) ska ha samma sanningsvärde, sant eller falskt, som R(b,a), för alla a och b. Reflexiv betyder att R(a,a) ska vara sann, för alla a.

 Okej, då förstår jag varför den inte är reflexiv men symmetrisk :) Tack för hjälpen

Svara
Close